为了保证井下工作安全,设计了一种CH4实时在线监测系统。在分析了CH4气体特征吸收光谱的基础上,系统采用静态傅里叶变换干涉具及柱面镜等组成。通过线阵CCD采集静态干涉条纹,由光谱分析算法求出各个波长上的光强衰减度,最后通过比尔-朗...为了保证井下工作安全,设计了一种CH4实时在线监测系统。在分析了CH4气体特征吸收光谱的基础上,系统采用静态傅里叶变换干涉具及柱面镜等组成。通过线阵CCD采集静态干涉条纹,由光谱分析算法求出各个波长上的光强衰减度,最后通过比尔-朗伯定理、浓度程长积公式等反演CH4气体的浓度。仿真计算了光源光强、出射光强与瓦斯浓度的函数关系,验证了采用5 m W的DFB激光器,可以保证变化区域基本线性。系统采用分子筛过滤处理的方法,克服了目前光谱检测系统无法在井下复杂环境应用的难题。实验显示,在5 cm的气室中,经分子筛过滤保护的光谱探测系统可以在潮湿、粉尘的环境中稳定工作。采用傅里叶变换光谱分析法求解CH4浓度时,最小探测精度可达0.01%。展开更多
文摘为了保证井下工作安全,设计了一种CH4实时在线监测系统。在分析了CH4气体特征吸收光谱的基础上,系统采用静态傅里叶变换干涉具及柱面镜等组成。通过线阵CCD采集静态干涉条纹,由光谱分析算法求出各个波长上的光强衰减度,最后通过比尔-朗伯定理、浓度程长积公式等反演CH4气体的浓度。仿真计算了光源光强、出射光强与瓦斯浓度的函数关系,验证了采用5 m W的DFB激光器,可以保证变化区域基本线性。系统采用分子筛过滤处理的方法,克服了目前光谱检测系统无法在井下复杂环境应用的难题。实验显示,在5 cm的气室中,经分子筛过滤保护的光谱探测系统可以在潮湿、粉尘的环境中稳定工作。采用傅里叶变换光谱分析法求解CH4浓度时,最小探测精度可达0.01%。