Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ...Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.展开更多
We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coa...We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coagulate themselves and a DNA aggregate of any size can yield a new monomer or double itself with the help of RNA aggregates. By employing the mean-field rate equation approach we analytically investigate the evolution behaviour of the system. For the system with catalysis-driven monomer duplications, the aggregate size distribution of DNA polymers αk(t) always follows a power law in size in the long-time limit, and it decreases with time or approaches a time-independent steady-state form in the case of the duplication rate independent of the size of the mother aggregates, while it increases with time increasing in the case of the duplication rate proportional to the size of the mother aggregates. For the system with complete catalysis-driven duplications, the aggregate size distribution αk(t) approaches a generalized or modified scaling form.展开更多
Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What ...Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What is more,as Zn atoms could locate on Zn/Cu alloy surface in forms of both single atom and cluster,how Zn surface distribution affects catalytic activity is still not clear.In this work,we performed a systematic theoretical study to compare the mechanistic natures and catalytic pathways between Zn single atom and small cluster on catalyst surface,where the surface oxidation was shown to play the critical role.Before surface oxidation,the Zn single atom/Cu is more active than the Zn small cluster/Cu,but its surface oxidation is difficult to take place.Instead,after the easy surface oxidation by CO_(2)decomposition,the oxidized Zn small cluster/Cu becomes much more active,which even exceeds the hardlyoxidized Zn single atom/Cu to become the active phase.Further analyses show this dramatic promotion of surface oxidation can be ascribed to the following factors:i)The O from surface oxidation could preferably occupy the strongest binding sites on the center of Zn cluster.That makes the O intermediates bind at the Zn/Cu interface,preventing their too tight binding for further hydrogenation;ii)The higher positive charge and work function on the oxidized surface could also promote the hydrogenation of O intermediates.This work provided one more example that under certain condition,the metal cluster can be more active than the single atom in heterogeneous catalysis.展开更多
The kinetics of the catalytical oxidation acid leaching of arsenopyrite is studied in the HNO<sub>3</sub>-H<sub>2</sub>SO<sub>4</sub>-O<sub>2</sub> aqueous system. In ad...The kinetics of the catalytical oxidation acid leaching of arsenopyrite is studied in the HNO<sub>3</sub>-H<sub>2</sub>SO<sub>4</sub>-O<sub>2</sub> aqueous system. In addition to the effect of reaction time on the extraction of arsenopyrite and distribution of products, the effects of operation factors and several additives on the reaction rate are also investigated. The experi mental results show that the oxidation rate is greatly dependent on nitric acid concentration, average radius of samples and acid concentration. The elemental sulphur produced does not interfere with the progress of the reacation process. It is found that a shrinking core model with chemical reaction controlling, which is expressed as 1-(1-α)<sup>1/3</sup>=kt, may be adopted to describe the kinetics results. The apparent activation energy is tested to be 23. 6 kJ/mol.展开更多
We propose a catalytically activated replication-decline model of three species, in which two aggregates of the same species can coagulate themselves, an A aggregate of any size can replicate itself with the help of B...We propose a catalytically activated replication-decline model of three species, in which two aggregates of the same species can coagulate themselves, an A aggregate of any size can replicate itself with the help of B aggregates, and the decline of A aggregate occurs under the catalysis of C aggregates. By means of mean-field rate equations, we derive the asymptotic solutions of the aggregate size distribution ak(t) of species A, which is found to depend strongly on the competition among three mechanisms: the self-coagulation of species A, the replication of species A catalyzed by species B, and the decline of species A catalyzed by species C. When the self-coagulation of species A dominates the system, the aggregate size distribution a^(t) satisfies the conventional scaling form. When the catalyzed replication process dominates the system, ak(t) takes the generalized scaling form. When the catalyzed decline process dominates the system, ak(t) approaches the modified scaling form.展开更多
Studies on ultrafine particle catalyst have attracted many researchers' attention by its large surface area,higher activity and selectivity.Based on the mechanism of α-Fe and Fe_xC_y as the catalytical active spe...Studies on ultrafine particle catalyst have attracted many researchers' attention by its large surface area,higher activity and selectivity.Based on the mechanism of α-Fe and Fe_xC_y as the catalytical active species this paper reports for the first time the preparation method of Fe_3C ultrafine parti- cle catalyst,from highly dispersed amorphous Fe powder and free carbon.The Fe powder and free car- bon,prepared by laser pyrolysis technique,was then treated by washing and heating at high tempera- ture protected with N_2.The catalyst prepared under different experimental conditions was characterazed by means of XRD,electronic diffraction and TEM.It shows that the crystlline grain size is in a range of 1-4nm and composed of Fe_3C and α-Fe.It has been found that the ultrafine particle iron-carbonide catalyst exhibited much higher activity and selectivity to light olefins.At the standard atmosphere and 380℃ reaction temperature,the conversion of CO reached a maximum of 80%.展开更多
We propose a catalytically activated aggregation-fragmentation model of three species, in which two clusters of species A can coagulate into a larger one under the catalysis of B clusters; otherwise, one cluster of sp...We propose a catalytically activated aggregation-fragmentation model of three species, in which two clusters of species A can coagulate into a larger one under the catalysis of B clusters; otherwise, one cluster of species A will fragment into two smaller clusters under the catalysis of C clusters. By means of mean-field rate equations, we derive the asymptotic solutions of the cluster-mass distributions ak(t) of species A, which is found to depend strongly on the competition between the catalyzed aggregation process and the catalyzed fragmentation process. When the catalyzed aggregation process dominates the system, the cluster-mass distribution ak(t) satisfies the conventional scaling form. When the catalyzed fragmentation process dominates the system, the scaling description of ak (t) breaks down completely and the monodisperse initial condition of species A would not be changed in the long-time limit. In the marginal case when the effects of catalyzed aggregation and catalyzed fragmentation counteract each other, ak(t) takes the modified scaling form and the system can eventually evolve to a steady state.展开更多
The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functiona...The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-1R (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m^2.g^-1 was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcusfaecalis colonies under visible irradiation, at different material doses and irradiation times.展开更多
Tin phosphides are attractive anode materials for ultrafast lithium-ion batteries(LIBs)because of their ultrahigh Li-ion diffusion capability and large theoretical-specific capacity.However,difficulties in synthesis a...Tin phosphides are attractive anode materials for ultrafast lithium-ion batteries(LIBs)because of their ultrahigh Li-ion diffusion capability and large theoretical-specific capacity.However,difficulties in synthesis and large size enabling electrochemical irreversibility impede their applications.Herein,an in situ catalytic phosphorization strategy is developed to synthesize SnP/CoP hetero-nanocrystals within reduced graphene oxide(rGO)-coated carbon frameworks,in which the SnP relative formation energy is significantly decreased according to density functional theory(DFT)calculations.The optimized hybrids exhibit ultrafast charge/discharge capability(260 mA·h·g^(-1)at 50 A·g^(-1))without capacity fading(645 mA·h·g^(-1)at 2 A·g^(-1))through 1500 cycles.The lithiation/delithiation mechanism is disclosed,showing that the 4.0 nm sized SnP/CoP nanocrystals possess a very high reversibility and that the previously formed metallic Co of CoP at a relatively high potential accelerates the subsequent reaction kinetics of SnP,hence endowing them with ultrafast charge/discharge capability,which is further verified by the relative dynamic current density distributions according to the finite element analysis.展开更多
Esterification is an important process in the food industry and can be carried out via homogeneous or heterogeneous catalysis.The homogeneous catalyst,despite providing high conversion,can cause corrosion in reactors,...Esterification is an important process in the food industry and can be carried out via homogeneous or heterogeneous catalysis.The homogeneous catalyst,despite providing high conversion,can cause corrosion in reactors,which is not observed with the use of heterogeneous catalysts.However,some of these catalysts require a high process temperature and may lose their catalytic activity with reuse.Thus,catalytic membranes have been proposed as a promising alternative.The combination of catalysis and separation in a single module provides greater conversion,reduction of excess reagents,compact industrial plant,making the process more efficient.Within this context,this work aims to present a literature review on the catalytic membrane for the synthesis of esters,improving the understanding of the production and development.This review examines the materials,catalysts used,and synthetic pathways.A comparison between the methods,as well as limitations and gaps in the literature,are highlighted.展开更多
The valence states of iron in iron catalysts,hydrogen reduced catalysts,and catalytically grown carbon nanotubes are determined by Mössbauer spectra,respectively.The results show that the iron exists as Fe,FeO,an...The valence states of iron in iron catalysts,hydrogen reduced catalysts,and catalytically grown carbon nanotubes are determined by Mössbauer spectra,respectively.The results show that the iron exists as Fe,FeO,andα-Fe_(2)O_(3) in hydrogen reduced catalysts,whereas it exists as Fe-C alloy,FeO,and α-Fe_(2)O_(3) in the catalysts encapsulated in carbon nanotube.It is postulated that Fe in hydrogen reduced catalysts plays the main role in the formation of catalytically grown carbon nanotube.展开更多
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi...BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.展开更多
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei...Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.展开更多
Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
The voltammetry for complexing adsorptive catalytical systems (CACS) has high sensitivity due to the coexistence of the adsorptive reducing current and the catalytical current. However, no study has been made on the c...The voltammetry for complexing adsorptive catalytical systems (CACS) has high sensitivity due to the coexistence of the adsorptive reducing current and the catalytical current. However, no study has been made on the case in which square wave voltammetry is used.展开更多
A comparative study of products of thermal and thermocatalytic cracking of polypropylene(PP) in the presence of potassium polytitanate(PPT) synthesized by treatment of TiO_(2)(rutile) powder with molten mixture of KOH...A comparative study of products of thermal and thermocatalytic cracking of polypropylene(PP) in the presence of potassium polytitanate(PPT) synthesized by treatment of TiO_(2)(rutile) powder with molten mixture of KOH and KNO_(3) taken in a weight ratio of 30∶30∶40 has been carried out.It was shown that the studied type of PPT powder exhibits catalytic properties in the reaction of thermal decomposition of PP,compared to the effect of commercial zeolite catalyst CBV-780 traditionally used for this purpose.Based on the analysis performed,the differences in the mechanism of catalytic action of PPT and the zeolite were considered.The reasons for the observed differences in the composition of PP cracking products and in the rate of coke formation on the surface of studied catalysts were analyzed.Considering the obtained results,it has been proposed that the CBV-780 catalyst promoted more intensive production of the gaseous hydrocarbons compared to PPT,due to higher specific surface area(internal surface) accessible for relatively light and small-sized hydrocarbon products of cracking.However,intensive coke formation on the outer surface of the microporous zeolite contributes to the blocking of transport channels and the rapid loss of catalytic action.At the same time,PPT,which initially has a smaller specific surface area,retains its catalytic activity significantly longer due to slit-shaped flat pores and higher transport accessibility of the inner surface.展开更多
Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-5...Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts.展开更多
Iodine is widely used in aqueous zinc batteries(ZBs)due to its abundant resources,low cost,and active redox reactions.In addition to the active material in zinc-iodine batteries,iodine also plays an important role in ...Iodine is widely used in aqueous zinc batteries(ZBs)due to its abundant resources,low cost,and active redox reactions.In addition to the active material in zinc-iodine batteries,iodine also plays an important role in other ZBs,such as regulating the electrochemical behavior of zinc ions,promoting the reaction kinetic and reversibility of other redox pairs,catalytic behaviors related to iodine reactions,coupling with other halogen ions,shuttle behaviors of polyiodides,etc.However,there is currently a lack of comprehensive discussion on these aspects.Here,this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs.The effect of iodine ions on the Zn^(2+)desolvation behaviors and the interfacial behaviors of Zn anode was summarized.Iodine redox pairs boosting other redox pairs,such as MnO_(2)/Mn^(2+)redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed.Moreover,the catalytic behaviors related to iodine reactions in aqueous ZBs,synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed.Finally,future prospects for designing effective iodine electrochemical behaviors with practicability are proposed,which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.展开更多
Polyhydroxyalkanoate(PHA),a well-known biodegradable polymer,featuresβ-lactones as its monomers,which can be selectively synthesized through ring-expansion carbonylation of epoxides using well-defined[Lewis acid]^(+)...Polyhydroxyalkanoate(PHA),a well-known biodegradable polymer,featuresβ-lactones as its monomers,which can be selectively synthesized through ring-expansion carbonylation of epoxides using well-defined[Lewis acid]^(+)[Co(CO)_(4)]^(-)catalysts.However,the decomposition of[Co(CO)_(4)]^(-)species at temperatures exceeding 80℃presents a hurdle for the development of commercially viable processes under high-temperature reaction conditions to reduce reaction time.Drawing insights from stable{(acyl)Co(CO)n}intermediates involved in historical HCo(CO)_(4)-catalyzed hydroformylation processes,we sought to the high-temperature catalytic activity of epoxide ring-expansion carbonylation.The developed catalyst system,[(acetyl)Co(CO)_(2)dppp]and[(TPP)CrCl],exhibited exceptional catalytic performance with an unprecedented initial turnover frequency of 4700 h^(-1)at 100℃and a turnover numbers of 93000.Notably,the catalyst displayed outstanding stability,operating at 80℃for 168 h while selectively generatingβ-lactones.展开更多
文摘Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.
基金supported by the National Natural Science Foundation of China (Grant Nos 10275048,10305009 and 10875086)by the Zhejiang Provincial Natural Science Foundation of China (Grant No 102067)
文摘We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coagulate themselves and a DNA aggregate of any size can yield a new monomer or double itself with the help of RNA aggregates. By employing the mean-field rate equation approach we analytically investigate the evolution behaviour of the system. For the system with catalysis-driven monomer duplications, the aggregate size distribution of DNA polymers αk(t) always follows a power law in size in the long-time limit, and it decreases with time or approaches a time-independent steady-state form in the case of the duplication rate independent of the size of the mother aggregates, while it increases with time increasing in the case of the duplication rate proportional to the size of the mother aggregates. For the system with complete catalysis-driven duplications, the aggregate size distribution αk(t) approaches a generalized or modified scaling form.
基金financially supported by the NSFC,China(No.22022504)the Guangdong“Pearl River”Talent Plan,China(No.2019QN01L353)+3 种基金the Higher Education Innovation Strong School Project of Guangdong Province of China,China(2020KTSCX122)the Guangdong Provincial Key Laboratory of Catalysis,China(No.2020B121201002)support from the Center for Computational Science and Engineering at SUSTechfinancial support by the National Key Research and Development Program of China,China(No.2017YFC0210905)。
文摘Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What is more,as Zn atoms could locate on Zn/Cu alloy surface in forms of both single atom and cluster,how Zn surface distribution affects catalytic activity is still not clear.In this work,we performed a systematic theoretical study to compare the mechanistic natures and catalytic pathways between Zn single atom and small cluster on catalyst surface,where the surface oxidation was shown to play the critical role.Before surface oxidation,the Zn single atom/Cu is more active than the Zn small cluster/Cu,but its surface oxidation is difficult to take place.Instead,after the easy surface oxidation by CO_(2)decomposition,the oxidized Zn small cluster/Cu becomes much more active,which even exceeds the hardlyoxidized Zn single atom/Cu to become the active phase.Further analyses show this dramatic promotion of surface oxidation can be ascribed to the following factors:i)The O from surface oxidation could preferably occupy the strongest binding sites on the center of Zn cluster.That makes the O intermediates bind at the Zn/Cu interface,preventing their too tight binding for further hydrogenation;ii)The higher positive charge and work function on the oxidized surface could also promote the hydrogenation of O intermediates.This work provided one more example that under certain condition,the metal cluster can be more active than the single atom in heterogeneous catalysis.
基金Financially supported by the National Natural Science Foundation of China
文摘The kinetics of the catalytical oxidation acid leaching of arsenopyrite is studied in the HNO<sub>3</sub>-H<sub>2</sub>SO<sub>4</sub>-O<sub>2</sub> aqueous system. In addition to the effect of reaction time on the extraction of arsenopyrite and distribution of products, the effects of operation factors and several additives on the reaction rate are also investigated. The experi mental results show that the oxidation rate is greatly dependent on nitric acid concentration, average radius of samples and acid concentration. The elemental sulphur produced does not interfere with the progress of the reacation process. It is found that a shrinking core model with chemical reaction controlling, which is expressed as 1-(1-α)<sup>1/3</sup>=kt, may be adopted to describe the kinetics results. The apparent activation energy is tested to be 23. 6 kJ/mol.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10875086 and 11145004)
文摘We propose a catalytically activated replication-decline model of three species, in which two aggregates of the same species can coagulate themselves, an A aggregate of any size can replicate itself with the help of B aggregates, and the decline of A aggregate occurs under the catalysis of C aggregates. By means of mean-field rate equations, we derive the asymptotic solutions of the aggregate size distribution ak(t) of species A, which is found to depend strongly on the competition among three mechanisms: the self-coagulation of species A, the replication of species A catalyzed by species B, and the decline of species A catalyzed by species C. When the self-coagulation of species A dominates the system, the aggregate size distribution a^(t) satisfies the conventional scaling form. When the catalyzed replication process dominates the system, ak(t) takes the generalized scaling form. When the catalyzed decline process dominates the system, ak(t) approaches the modified scaling form.
基金The project was supported by the National Natural Science Foundation of China.
文摘Studies on ultrafine particle catalyst have attracted many researchers' attention by its large surface area,higher activity and selectivity.Based on the mechanism of α-Fe and Fe_xC_y as the catalytical active species this paper reports for the first time the preparation method of Fe_3C ultrafine parti- cle catalyst,from highly dispersed amorphous Fe powder and free carbon.The Fe powder and free car- bon,prepared by laser pyrolysis technique,was then treated by washing and heating at high tempera- ture protected with N_2.The catalyst prepared under different experimental conditions was characterazed by means of XRD,electronic diffraction and TEM.It shows that the crystlline grain size is in a range of 1-4nm and composed of Fe_3C and α-Fe.It has been found that the ultrafine particle iron-carbonide catalyst exhibited much higher activity and selectivity to light olefins.At the standard atmosphere and 380℃ reaction temperature,the conversion of CO reached a maximum of 80%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10275048 and 10875086)by the Science Foundation of Shihezi University (Grant No.RCZX200745)
文摘We propose a catalytically activated aggregation-fragmentation model of three species, in which two clusters of species A can coagulate into a larger one under the catalysis of B clusters; otherwise, one cluster of species A will fragment into two smaller clusters under the catalysis of C clusters. By means of mean-field rate equations, we derive the asymptotic solutions of the cluster-mass distributions ak(t) of species A, which is found to depend strongly on the competition between the catalyzed aggregation process and the catalyzed fragmentation process. When the catalyzed aggregation process dominates the system, the cluster-mass distribution ak(t) satisfies the conventional scaling form. When the catalyzed fragmentation process dominates the system, the scaling description of ak (t) breaks down completely and the monodisperse initial condition of species A would not be changed in the long-time limit. In the marginal case when the effects of catalyzed aggregation and catalyzed fragmentation counteract each other, ak(t) takes the modified scaling form and the system can eventually evolve to a steady state.
基金Supported by the Sectoral Operational Programme Human Resources Development(SOP HRD)Financed from the European Social Fundthe Romanian Government under the Contract Number POSDRU/89/1.5/S/63700
文摘The functional materials based on natural zeolite (clinoptilolite), TiO2-zeolite and Ag-TiO2-zeolite have been successfully synthesized by solid-state reaction in fast-hydrothermal conditions. The obtained functional materials were investigated by X-ray diffraction (XRD), FT-1R (Fourier transform infrared) spectroscopy, DRUV-VIS (diffuse reflectance ultraviolet-visible) spectroscopy, BET (Brunauer-Emmett-Teller) and SEM/EDX (scanning electron microscope/energy dispersive X-ray spectrometer) analyses. The XRD results indicated that the clinoptilolite structure has a good thermal stabilization after the fast-hydrothermal treatment. Also, the high specific surface area about 92.55 m^2.g^-1 was noticed for Ag-TiO2-zeolite functional material. The presence of dopants was evidenced from EDX spectra. The enhanced bactericidal activity of Ag-TiO2-zeolite catalyst is proved through damaging of Enterococcusfaecalis colonies under visible irradiation, at different material doses and irradiation times.
基金supported by the National Natural Science Foundation of China(21975074,21838003,and 91834301)the Social Development Program of Shanghai(17DZ1200900)+1 种基金the Shanghai Scientific and Technological Innovation Project(18JC1410500)the Fundamental Research Funds for the Central Universities(222201718002)。
文摘Tin phosphides are attractive anode materials for ultrafast lithium-ion batteries(LIBs)because of their ultrahigh Li-ion diffusion capability and large theoretical-specific capacity.However,difficulties in synthesis and large size enabling electrochemical irreversibility impede their applications.Herein,an in situ catalytic phosphorization strategy is developed to synthesize SnP/CoP hetero-nanocrystals within reduced graphene oxide(rGO)-coated carbon frameworks,in which the SnP relative formation energy is significantly decreased according to density functional theory(DFT)calculations.The optimized hybrids exhibit ultrafast charge/discharge capability(260 mA·h·g^(-1)at 50 A·g^(-1))without capacity fading(645 mA·h·g^(-1)at 2 A·g^(-1))through 1500 cycles.The lithiation/delithiation mechanism is disclosed,showing that the 4.0 nm sized SnP/CoP nanocrystals possess a very high reversibility and that the previously formed metallic Co of CoP at a relatively high potential accelerates the subsequent reaction kinetics of SnP,hence endowing them with ultrafast charge/discharge capability,which is further verified by the relative dynamic current density distributions according to the finite element analysis.
基金support from CAPES-Coorde nação de Aperfeiçoamento de Pessoal de Nível Superior(PROEX and PrInt Programs)CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico(307576/2018-3 and 420275/2018-5)and FAPESC-Fundação de AmparoàPesquisa do Estado de Santa Catarina.
文摘Esterification is an important process in the food industry and can be carried out via homogeneous or heterogeneous catalysis.The homogeneous catalyst,despite providing high conversion,can cause corrosion in reactors,which is not observed with the use of heterogeneous catalysts.However,some of these catalysts require a high process temperature and may lose their catalytic activity with reuse.Thus,catalytic membranes have been proposed as a promising alternative.The combination of catalysis and separation in a single module provides greater conversion,reduction of excess reagents,compact industrial plant,making the process more efficient.Within this context,this work aims to present a literature review on the catalytic membrane for the synthesis of esters,improving the understanding of the production and development.This review examines the materials,catalysts used,and synthetic pathways.A comparison between the methods,as well as limitations and gaps in the literature,are highlighted.
基金Supported by the National Natural Science Foundation of China under Grant No.59642006。
文摘The valence states of iron in iron catalysts,hydrogen reduced catalysts,and catalytically grown carbon nanotubes are determined by Mössbauer spectra,respectively.The results show that the iron exists as Fe,FeO,andα-Fe_(2)O_(3) in hydrogen reduced catalysts,whereas it exists as Fe-C alloy,FeO,and α-Fe_(2)O_(3) in the catalysts encapsulated in carbon nanotube.It is postulated that Fe in hydrogen reduced catalysts plays the main role in the formation of catalytically grown carbon nanotube.
基金financially supported by the National Natural Science Foundation of China(No.22272151)Public Welfare Technology Application Research Project of Jinhua City,China(No.2023-4-022)。
文摘BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.
基金Financial support from the National Natural Science Foundation of China(51972016)the Fundamental Research Funds for the Central Universities(JD2417)is gratefully acknowledged.
文摘Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
基金Project supported by the National Natural Science Foundation of China.
文摘The voltammetry for complexing adsorptive catalytical systems (CACS) has high sensitivity due to the coexistence of the adsorptive reducing current and the catalytical current. However, no study has been made on the case in which square wave voltammetry is used.
文摘A comparative study of products of thermal and thermocatalytic cracking of polypropylene(PP) in the presence of potassium polytitanate(PPT) synthesized by treatment of TiO_(2)(rutile) powder with molten mixture of KOH and KNO_(3) taken in a weight ratio of 30∶30∶40 has been carried out.It was shown that the studied type of PPT powder exhibits catalytic properties in the reaction of thermal decomposition of PP,compared to the effect of commercial zeolite catalyst CBV-780 traditionally used for this purpose.Based on the analysis performed,the differences in the mechanism of catalytic action of PPT and the zeolite were considered.The reasons for the observed differences in the composition of PP cracking products and in the rate of coke formation on the surface of studied catalysts were analyzed.Considering the obtained results,it has been proposed that the CBV-780 catalyst promoted more intensive production of the gaseous hydrocarbons compared to PPT,due to higher specific surface area(internal surface) accessible for relatively light and small-sized hydrocarbon products of cracking.However,intensive coke formation on the outer surface of the microporous zeolite contributes to the blocking of transport channels and the rapid loss of catalytic action.At the same time,PPT,which initially has a smaller specific surface area,retains its catalytic activity significantly longer due to slit-shaped flat pores and higher transport accessibility of the inner surface.
基金Natural Science Foundation of China(Grant No.NSFC-22072062,22202098)。
文摘Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2023D01C168)Scientific Research Program of the Higher Education Institution of Xinjiang(Grant No.XJEDU2022P001)+1 种基金Autonomous Region"Tianchi Talent"Introduction Program Youth Doctoral Program(Grant No.51052401544)Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region(Grant No.2023D14001).
文摘Iodine is widely used in aqueous zinc batteries(ZBs)due to its abundant resources,low cost,and active redox reactions.In addition to the active material in zinc-iodine batteries,iodine also plays an important role in other ZBs,such as regulating the electrochemical behavior of zinc ions,promoting the reaction kinetic and reversibility of other redox pairs,catalytic behaviors related to iodine reactions,coupling with other halogen ions,shuttle behaviors of polyiodides,etc.However,there is currently a lack of comprehensive discussion on these aspects.Here,this review provides a comprehensive overview of the electrochemical behaviors of iodide in the aqueous ZBs.The effect of iodine ions on the Zn^(2+)desolvation behaviors and the interfacial behaviors of Zn anode was summarized.Iodine redox pairs boosting other redox pairs,such as MnO_(2)/Mn^(2+)redox pair and vanadium redox pair to obtain high reversibility and capacity was also discussed.Moreover,the catalytic behaviors related to iodine reactions in aqueous ZBs,synergistic reaction with other halogen ions and suppression of shuttle behaviors for high performance zinc-iodine batteries were systematically analyzed.Finally,future prospects for designing effective iodine electrochemical behaviors with practicability are proposed,which will provide scientific guidance for the practical application of iodine-related aqueous ZBs.
文摘Polyhydroxyalkanoate(PHA),a well-known biodegradable polymer,featuresβ-lactones as its monomers,which can be selectively synthesized through ring-expansion carbonylation of epoxides using well-defined[Lewis acid]^(+)[Co(CO)_(4)]^(-)catalysts.However,the decomposition of[Co(CO)_(4)]^(-)species at temperatures exceeding 80℃presents a hurdle for the development of commercially viable processes under high-temperature reaction conditions to reduce reaction time.Drawing insights from stable{(acyl)Co(CO)n}intermediates involved in historical HCo(CO)_(4)-catalyzed hydroformylation processes,we sought to the high-temperature catalytic activity of epoxide ring-expansion carbonylation.The developed catalyst system,[(acetyl)Co(CO)_(2)dppp]and[(TPP)CrCl],exhibited exceptional catalytic performance with an unprecedented initial turnover frequency of 4700 h^(-1)at 100℃and a turnover numbers of 93000.Notably,the catalyst displayed outstanding stability,operating at 80℃for 168 h while selectively generatingβ-lactones.