Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra...Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.展开更多
The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to...The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.展开更多
地球系统模式是研究气候变化、进行地球系统建模的重要软件.中科院地球系统模式CAS-ESM (Chinese Academy of Sciences-Earth System Model)是中科院大气所发展的进行地球系统模拟的高性能计算应用软件,目前已经发布了2.0版本,其模拟性...地球系统模式是研究气候变化、进行地球系统建模的重要软件.中科院地球系统模式CAS-ESM (Chinese Academy of Sciences-Earth System Model)是中科院大气所发展的进行地球系统模拟的高性能计算应用软件,目前已经发布了2.0版本,其模拟性能一直是制约其发展的关键因素之一.为了对CAS-ESM 2.0进行性能评估和分析,将CAS-ESM 2.0移植到中科院高性能计算系统"元"和"地球系统数值模拟装置"原型系统这两大高性能计算平台上,开展了耦合数值模拟试验.试验结果显示, CAS-ESM 2.0存在受平台影响的性能差异,大气模式的运行时间占比最高,超过了其他分模式的总和,部分分模式存在可扩展性问题.然后对试验结果进行了进一步的分析,发现大气模式的性能瓶颈主要是由通信造成的.因而对CAS-ESM 2.0的后续研发发展工作中, CAS-ESM的跨平台优化、大气模式的性能优化与并行算法改进、分模式的可扩展性应该是研究的重点之一.展开更多
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercom...The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.展开更多
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro...The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.展开更多
Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercom...Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.展开更多
“Double ITCZ”is a common precipitation bias over the tropical Pacific in current climate models and Earth system models,but the reasons for its formation are still worth exploring and discussing.In this study,we ado...“Double ITCZ”is a common precipitation bias over the tropical Pacific in current climate models and Earth system models,but the reasons for its formation are still worth exploring and discussing.In this study,we adopted the second version of Chinese Academy of Sciences Earth System Model(CAS-ESM2),by comparing a set of sea surface temperature(SST)bias correction experiments over the tropical Pacific,to explore the possible mechanism of SST bias on inducing the“Double ITCZ”from the perspective of the climatic annual mean bias in the coupled model.We revealed that the simulated climatic annual mean SST bias over the tropical Pacific can affect the bias of latent heat flux through the saturation specific humidity,and the bias of latent heat flux can further affect that of vertical velocity of humid air by the condensation release mechanism,and finally modulate the simulated bias in precipitation.Furthermore,through the inter-comparison between different experiments,it is found that the source of Double ITCZ might mainly come from the annual mean SST bias over the tropical western Pacific through the proposed air-sea coupled process of“SST-saturated specific humidity-latent heat flux-vertical velocity-precipitation”,indicating a possible way on reducing the couple biases in models over the tropical Pacific to improve the accuracy of CAS-ESM2 for climate simulation.展开更多
基金jointly supported by the National Key Research and Development Program of China (Grant No. 2022YFC3105000)the Youth Innovation Promotion Association of CAS (2022074)+3 种基金the National Natural Science Foundation of China (Grant Nos. 42005123, 42275173 and 41706028)the National Key Research and Development Program of China(2022YFE0106500)the 7th Youth Talent Support Project of Ningxia Hui Autonomous Region Association for Science and TechnologyNational Key Scientific and Technological Infrastructure project ‘‘Earth System Science Numerical Simulator Facility’’(EarthLab) for supporting the simulations in this study
文摘Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.
基金the National Key Research and Development Program of China(Grant No.2022YFE0106500)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022076)+1 种基金the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab2023-EL-ZD-00012)。
文摘The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.
文摘地球系统模式是研究气候变化、进行地球系统建模的重要软件.中科院地球系统模式CAS-ESM (Chinese Academy of Sciences-Earth System Model)是中科院大气所发展的进行地球系统模拟的高性能计算应用软件,目前已经发布了2.0版本,其模拟性能一直是制约其发展的关键因素之一.为了对CAS-ESM 2.0进行性能评估和分析,将CAS-ESM 2.0移植到中科院高性能计算系统"元"和"地球系统数值模拟装置"原型系统这两大高性能计算平台上,开展了耦合数值模拟试验.试验结果显示, CAS-ESM 2.0存在受平台影响的性能差异,大气模式的运行时间占比最高,超过了其他分模式的总和,部分分模式存在可扩展性问题.然后对试验结果进行了进一步的分析,发现大气模式的性能瓶颈主要是由通信造成的.因而对CAS-ESM 2.0的后续研发发展工作中, CAS-ESM的跨平台优化、大气模式的性能优化与并行算法改进、分模式的可扩展性应该是研究的重点之一.
基金supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB0200804)the National Natural Science Foundation of China(Grant Nos.41706036,41706028,41975129 and 41630530)+2 种基金the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.QNHX2017)the National Key Scientific and Technological Infrastructure project entitled“Earth System Science Numerical Simulator Facility”(Earth Lab)key operation construction projects of Chongqing Meteorological Bureau"Construction of chongqing short-term climate numerical predic tion platform"。
文摘The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.
基金This work was jointly funded by the National Natural Science Foundation of China(Grant Nos.42205168,41830967,and 42175163)the Youth Innovation Promotion Association CAS(2021073)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.
基金supported by the National Natural Science Foundation of China(Grant No.41875126)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility”(EarthLab)。
文摘Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.
基金supported by the National Natural Science Foundation of China(Grant No.42175045)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42000000)。
文摘“Double ITCZ”is a common precipitation bias over the tropical Pacific in current climate models and Earth system models,but the reasons for its formation are still worth exploring and discussing.In this study,we adopted the second version of Chinese Academy of Sciences Earth System Model(CAS-ESM2),by comparing a set of sea surface temperature(SST)bias correction experiments over the tropical Pacific,to explore the possible mechanism of SST bias on inducing the“Double ITCZ”from the perspective of the climatic annual mean bias in the coupled model.We revealed that the simulated climatic annual mean SST bias over the tropical Pacific can affect the bias of latent heat flux through the saturation specific humidity,and the bias of latent heat flux can further affect that of vertical velocity of humid air by the condensation release mechanism,and finally modulate the simulated bias in precipitation.Furthermore,through the inter-comparison between different experiments,it is found that the source of Double ITCZ might mainly come from the annual mean SST bias over the tropical western Pacific through the proposed air-sea coupled process of“SST-saturated specific humidity-latent heat flux-vertical velocity-precipitation”,indicating a possible way on reducing the couple biases in models over the tropical Pacific to improve the accuracy of CAS-ESM2 for climate simulation.