3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evalu...3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evaluating for C/Ph composite and Duralumin,the 2D evaluation method of the cutting surface topography of C/Ph composite loses a lot of information,the characteristics of the surface topography of C/Ph composite can be comprehensively and authentically evaluated only by 3D evaluation method.Furthermore,3D amplitude and spatial parameters were adopted to evaluate the surface.The results show that: the topography of the C/Ph composite is anisotropic,there are more valleys in the machined surface of C/Ph than that of duralumin,and there are not obvious feeding textures for C/Ph,which indicates the machining mechanism is different from the metal.In conclusion,the topography of the C/Ph composite cutting surface is anisotropic;the cutting surface of C/Ph composite needs 3D evaluation method.展开更多
This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughnes...This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughness of C/C composite and Duralumin, the 2D evaluation method of the cutting surface topography of C/C composite loses a lot of information, and the characteristics of the surface topography of C/C composite can be comprehensively and authentically evaluated only by the 3D evaluation method. Furthermore, 3D amplitude and spatial parameters are adopted to evaluate the surface and the results show that: the topography of the C/C composite is anisotropy and there are no obvious feeding textures but abrupt peaks and valleys on surface of the C/C composite, which indicates that the machining mecha- nism is different from that of the metal. In conclusion, The C/C composite surface is evaluated using a 3D evaluation method, the roughness error is small, and the unique topography characteristics earl be au- thentically evaluated.展开更多
基金Funded by the National Natural Science Foundation of China(No.50875036)
文摘3D evaluation method of cutting surface topography for C/Ph composites was established.The cutting surface was measured by Talyscan 150,using 3D non-contact measurement.Through the results of 2D and 3D roughness evaluating for C/Ph composite and Duralumin,the 2D evaluation method of the cutting surface topography of C/Ph composite loses a lot of information,the characteristics of the surface topography of C/Ph composite can be comprehensively and authentically evaluated only by 3D evaluation method.Furthermore,3D amplitude and spatial parameters were adopted to evaluate the surface.The results show that: the topography of the C/Ph composite is anisotropic,there are more valleys in the machined surface of C/Ph than that of duralumin,and there are not obvious feeding textures for C/Ph,which indicates the machining mechanism is different from the metal.In conclusion,the topography of the C/Ph composite cutting surface is anisotropic;the cutting surface of C/Ph composite needs 3D evaluation method.
基金Supported by the National Natural Science Foundation of China (No. 50875036)
文摘This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughness of C/C composite and Duralumin, the 2D evaluation method of the cutting surface topography of C/C composite loses a lot of information, and the characteristics of the surface topography of C/C composite can be comprehensively and authentically evaluated only by the 3D evaluation method. Furthermore, 3D amplitude and spatial parameters are adopted to evaluate the surface and the results show that: the topography of the C/C composite is anisotropy and there are no obvious feeding textures but abrupt peaks and valleys on surface of the C/C composite, which indicates that the machining mecha- nism is different from that of the metal. In conclusion, The C/C composite surface is evaluated using a 3D evaluation method, the roughness error is small, and the unique topography characteristics earl be au- thentically evaluated.