期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Surface integrity of GH4169 affected by cantilever finish grinding and the application in aero-engine blades 被引量:9
1
作者 Li Xun Ma Shuang Meng Fanjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1539-1545,共7页
GH4169 is the main material for aero-cngine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surtace integrity of blades and integrated blisks are difficult to be ... GH4169 is the main material for aero-cngine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surtace integrity of blades and integrated blisks are difficult to be met by utilizing the conventional milling process, which directly influence the global performance and reliability of aero-engines. Through grinding experiments on parameters and surface integrity optimization, the helical cantilever grinding process utilizing a 300# CBN RB wheel is presented and applied in finish machining of GH4169 blades. The profile errors of the blade surface are within ±0.01 mm, the roughness is less than 0.4μm, the residual compressive stresses and the hardening rate are appropriate, there are no phenomena of burr and smearing with the grinding chips, and the leading/trailing edge can be smoothly connected with the suction/pressure surface. All the experimental results indicate that this grinding process is greatly suitable for the profile finish machining of GH4169 blades. 展开更多
关键词 blade:cantilever:gh4169:grinding:surface integrity
原文传递
GH4169叶片悬臂插磨表面完整性及参数优化研究 被引量:5
2
作者 马爽 李勋 +1 位作者 崔伟 苏帅 《航空制造技术》 2016年第18期102-108,共7页
利用超硬磨料砂轮进行GH4169叶片型面的精密磨削加工是提高其几何精度的有效手段。通过对GH4169材料进行悬臂插磨试验发现在精磨参数下磨削表面硬度在44~47HRC之间,叶片表面双方向均获得较大的残余压应力,进给方向上的残余压应力大于线... 利用超硬磨料砂轮进行GH4169叶片型面的精密磨削加工是提高其几何精度的有效手段。通过对GH4169材料进行悬臂插磨试验发现在精磨参数下磨削表面硬度在44~47HRC之间,叶片表面双方向均获得较大的残余压应力,进给方向上的残余压应力大于线速度方向上的残余压应力,且磨削参数对磨削表面硬度和残余压应力的影响不显著。在此基础上,基于磨削表面粗糙度小于Ra0.5μm的要求,提出叶片插磨的参数优化原则,为了降低磨削粗糙度推荐插磨参数:砂轮线速度26.8m/s,进给速度1000mm/min,型面磨削残高2μm;为了减小磨削力引起叶片的弹性变形所造成的加工误差,推荐磨削深度为0.005mm。在推荐参数下所加工叶片的形状精度可达到20μm以内,磨削表面以下没有明显的拉应力层,压应力层深度约为70μm,最大残余压应力位于表面下5μm处。以上研究为GH4169叶片的悬臂插磨工艺提供了一种基于表面完整性的参数优化方法和一组经过优化的精磨参数。 展开更多
关键词 叶片 磨削 表面完整性 参数优化 悬臂 插磨
在线阅读 下载PDF
Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces 被引量:21
3
作者 Xun LI Chunming GUAN Peng ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1399-1405,共7页
Surface topography of superalloy GH4169 workpieces machined by milling and grinding is different significantly. Meanwhile, surface roughness, as one of the main indicators of machined surface integrity, has a great in... Surface topography of superalloy GH4169 workpieces machined by milling and grinding is different significantly. Meanwhile, surface roughness, as one of the main indicators of machined surface integrity, has a great influence on the fatigue behavior of workpieces. Based on analyzing the formation mechanism and characteristics of surface roughness utilizing different machining processes and parameters, the machined surface roughness curve can be decoupled into two parts utilizing frequency spectrum analysis, which are kinematic surface roughness curve and stochastic surface roughness curve. The kinematic surface roughness curve is influenced by machining process,parameters, geometry of the cutting tool or wheel, the maximum height of which is expressed as Rz'.By subtracting the kinematic part from the measurement curve, the stochastic surface roughness curve and its maximum height Rz" can be obtained, which is influenced by the defects of cutting tool edge or abrasive grains, built-up edges(BUE), cracks, high frequency vibration and so on. On the other hand, the results of decoupling analysis of surface roughness curves indicate that Raand Rz values of milling GH4169 are 2–5 times and 1–3 times as high as those of grinding, while Rz" value of milling is 13.85%–37.7% as high as that of grinding. According to the results of fatigue life tests of specimens machined by milling and grinding, it can be concluded that fatigue behavior of GH4169 decreases with the increase of Rz"monotonically, even utilizing different machining processes. 展开更多
关键词 Fatigue life gh4169 grinding MILLING surface integrity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部