This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ...This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ>1. The results show thatis a necessary and sufficient condition for Graph(B(t)) to have same upper and lower box dimensions. For the fractional Riemann-Liouvtlle differential operator Du and the fractional integral operator D-v, the results show that if A is sufficiently large, then a necessary and sufficient condition for box dimensionof Graph(D-v(B)), 0 < v < s - 1, to be s - v and box dimension of Graph(Du(B)), 0 < u < 2 - s, to bes + u is also lim.展开更多
We consider weighted Besicovitch sets which are defined in terms of the weighted frequency of digit 1 in the dyadic expansion of real numbers. Explicit formulas for their Hausdorff dimensions are given.
This research paper concentrates on the Kakeya problem. After the introduction of historical issue, we provide a thorough presentation of the results of Kakeya problem with some examples of the early solutions as well...This research paper concentrates on the Kakeya problem. After the introduction of historical issue, we provide a thorough presentation of the results of Kakeya problem with some examples of the early solutions as well as the proof of the final outcome of this problem, the solution of which is known as Besicovitch Set. We give 3 different construction of Besicovitch set as well as the intuition of construction, which is related to iterated integral of 2-variable real function. We also give the Cunningham construction in which the area of a simply connected Kakeya set can also tend to 0. Furthermore, we generalize the process of generating a Kakeya set into a Kakeya dynamic. The definition of multiplicity enables us to estimate the area of a Kakeya set. In following discussion we provided a conjecture related to the solution in particular range. Finally, the derivation of the Kakeya problem is presented.展开更多
Applications of a constitutive framework providing compound complexity analysis and indexing of coarse-grained self-similar time series representing behavioural data are presented. A notion of behavioural entropy and ...Applications of a constitutive framework providing compound complexity analysis and indexing of coarse-grained self-similar time series representing behavioural data are presented. A notion of behavioural entropy and hysteresis is introduced as two different forms of compound measures. These measures provide clinically applicable complexity analysis of behavioural patterns yielding scalar characterisation of time-varying behaviours registered over an extended period of time. The behavioural data are obtained using body attached sensors providing non-invasive readings of heart rate, skin blood perfusion, blood oxygenation, skin temperature, movement and steps frequency. The results using compound measures of behavioural patterns of fifteen healthy individuals are presented. The application of the compound measures is shown to correlate with complexity analysis. The correlation is demonstrated using two healthy subjects compared against a control group. This indicates a possibility to use these measures in place of fractional dimensions to provide a finer characterisation of behavioural patterns observed using sensory data acquired over a long period of time.展开更多
基金Research supported by national Natural Science Foundation of China (10141001)Zhejiang Provincial Natural Science Foundation 9100042 and 1010009.
文摘This paper summarized recent achievements obtained by the authors about the box dimensions of the Besicovitch functions given bywhere 1 < s < 2, λk> tends to infinity as k→∞ and λk satisfies λk+1/λk≥λ>1. The results show thatis a necessary and sufficient condition for Graph(B(t)) to have same upper and lower box dimensions. For the fractional Riemann-Liouvtlle differential operator Du and the fractional integral operator D-v, the results show that if A is sufficiently large, then a necessary and sufficient condition for box dimensionof Graph(D-v(B)), 0 < v < s - 1, to be s - v and box dimension of Graph(Du(B)), 0 < u < 2 - s, to bes + u is also lim.
基金Supported by the Special Fund for Major State Basic Research Projects (Grant No. 60472041)
文摘We consider weighted Besicovitch sets which are defined in terms of the weighted frequency of digit 1 in the dyadic expansion of real numbers. Explicit formulas for their Hausdorff dimensions are given.
文摘This research paper concentrates on the Kakeya problem. After the introduction of historical issue, we provide a thorough presentation of the results of Kakeya problem with some examples of the early solutions as well as the proof of the final outcome of this problem, the solution of which is known as Besicovitch Set. We give 3 different construction of Besicovitch set as well as the intuition of construction, which is related to iterated integral of 2-variable real function. We also give the Cunningham construction in which the area of a simply connected Kakeya set can also tend to 0. Furthermore, we generalize the process of generating a Kakeya set into a Kakeya dynamic. The definition of multiplicity enables us to estimate the area of a Kakeya set. In following discussion we provided a conjecture related to the solution in particular range. Finally, the derivation of the Kakeya problem is presented.
文摘Applications of a constitutive framework providing compound complexity analysis and indexing of coarse-grained self-similar time series representing behavioural data are presented. A notion of behavioural entropy and hysteresis is introduced as two different forms of compound measures. These measures provide clinically applicable complexity analysis of behavioural patterns yielding scalar characterisation of time-varying behaviours registered over an extended period of time. The behavioural data are obtained using body attached sensors providing non-invasive readings of heart rate, skin blood perfusion, blood oxygenation, skin temperature, movement and steps frequency. The results using compound measures of behavioural patterns of fifteen healthy individuals are presented. The application of the compound measures is shown to correlate with complexity analysis. The correlation is demonstrated using two healthy subjects compared against a control group. This indicates a possibility to use these measures in place of fractional dimensions to provide a finer characterisation of behavioural patterns observed using sensory data acquired over a long period of time.