期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Bayesian model averaging(BMA)for nuclear data evaluation
1
作者 E.Alhassan D.Rochman +1 位作者 G.Schnabel A.J.Koning 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期193-218,共26页
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s... To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation. 展开更多
关键词 bayesian model averaging(bma) Nuclear data Nuclear reaction models model parameters TALYS code system Covariances
在线阅读 下载PDF
Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach
2
作者 XU Wenjie DING Jianli +2 位作者 BAO Qingling WANG Jinjie XU Kun 《Journal of Arid Land》 SCIE CSCD 2024年第3期331-354,共24页
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a... Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions. 展开更多
关键词 precipitation estimates satellite-based and reanalysis precipitation dynamic bayesian model averaging streamflow simulation Ebinur Lake Basin XINJIANG
在线阅读 下载PDF
Response of Growing Season Gross Primary Production to El Nino in Different Phases of the Pacific Decadal Oscillation over Eastern China Based on Bayesian Model Averaging 被引量:4
3
作者 Yueyue LI Li DAN +5 位作者 Jing PENG Junbang WANG Fuqiang YANG Dongdong GAO Xiujing YANG Qiang YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1580-1595,共16页
Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the ... Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO. 展开更多
关键词 East China bayesian model averaging Gross primary production El Nino Pacific Decadal Oscillation Monsoon rainfall
在线阅读 下载PDF
Improving microwave brightness temperature predictions based on Bayesian model averaging ensemble approach 被引量:1
4
作者 Binghao JIA Zhenghui XIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1501-1516,共16页
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu... The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64. 展开更多
关键词 bayesian model averaging bma microwave brightness temperature com-munity microwave emission model (CMEM) community land model version 4.5 (CLM4.5)
在线阅读 下载PDF
Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging 被引量:3
5
作者 YANG Jing FANG Gonghuan +1 位作者 CHEN Yaning Philippe DE-MAEYER 《Journal of Arid Land》 SCIE CSCD 2017年第4期622-634,共13页
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ... Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease. 展开更多
关键词 climate change GCM ensemble bayesian model averaging Tianshan and northern Kunlun Mountains
在线阅读 下载PDF
Improving the simulation of terrestrial water storage anomalies over China using a Bayesian model averaging ensemble approach 被引量:1
6
作者 LIU Jian-Guo JIA Bing-Hao +1 位作者 XIE Zheng-Hui SHI Chun-Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期322-329,共8页
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph... The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data. 展开更多
关键词 Terrestrial water storage anomalies multi-forcing and multi-model ensemble simulation bayesian model averaging spatiotemporal variation UNCERTAINTY
在线阅读 下载PDF
Effects of Bayesian Model Selection on Frequentist Performances: An Alternative Approach
7
作者 Georges Nguefack-Tsague Walter Zucchini 《Applied Mathematics》 2016年第10期1103-1115,共14页
It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selectio... It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper is concerned with the properties of Bayesian estimator obtained after model selection when the frequentist (long run) performances of the resulted Bayesian estimator are of interest. The proposed method, using Bayesian decision theory, is based on the well known Bayesian model averaging (BMA)’s machinery;and outperforms PMSE and BMA. It is shown that if the unconditional model selection probability is equal to model prior, then the proposed approach reduces BMA. The method is illustrated using Bernoulli trials. 展开更多
关键词 model Selection Uncertainty model Uncertainty bayesian model Selection bayesian model Averaging bayesian Theory Frequentist Performance
在线阅读 下载PDF
Comparison between Different ESI Methods on Refractory Epilepsy Patients Shows a High Sensitivity for Bayesian Model Averaging
8
作者 Danilo Maziero Agustin Lage Castellanos +1 位作者 Carlos Ernesto Garrido Salmon Tonicarlo Rodrigues Velasco 《Journal of Biomedical Science and Engineering》 2014年第9期662-674,共13页
Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showin... Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showing encouraging results for mapping interictal epileptiform discharges (IED). However, ESI is underused in planning epilepsy surgery. This is basically due to the wide availability of methods for solving the electromagnetism inverse problem (e-IP) associated to few studies using EEG setups similar to those most commonly used in clinical setting. In this study, we applied six different methods of solving the e-IP based on IEDs of 20 focal epilepsy patients that presented abnormalities in their MRI. We compared the ESI maps obtained by each method with the location of the abnormality, calculating the Euclidian distances from the center of the lesion to the closest border of the method solution (CL-BM) and also to the solution’s maxima (CL-MM). We also applied a score system in order to allow us to evaluate the sensitivity of each method for temporal and extra temporal patients. In our patients, the Bayesian Model Averaging method had a sensitivity of 86% and the shortest CL-MM. This method also had more restricted solutions that were more representative of epileptogenic activities than those obtained by the other methods. 展开更多
关键词 EEG EPILEPSY Electrical SOURCE Imaging bayesian model AVERAGING
在线阅读 下载PDF
A Mixture-Based Bayesian Model Averaging Method
9
作者 Georges Nguefack-Tsague Walter Zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE bayesian model Selection bayesian model Averaging bayesian Theory Frequentist Performance
在线阅读 下载PDF
CMIP6全球气候模式对中国气温模拟的BMA方法评估
10
作者 邓鹏 王国复 王国杰 《气象科学》 2024年第4期775-782,共8页
选用CMIP6中13种全球气候模式数据,以CN05.1数据作为实测资料,对1961—2014年中国气温进行模拟及模式能力评估。采用BMA、泰勒图评估模式排名,并将BMA与算术平均(AVG)集合结果进行比较。结果表明,泰勒图评分和BMA权重在最优和最劣模式... 选用CMIP6中13种全球气候模式数据,以CN05.1数据作为实测资料,对1961—2014年中国气温进行模拟及模式能力评估。采用BMA、泰勒图评估模式排名,并将BMA与算术平均(AVG)集合结果进行比较。结果表明,泰勒图评分和BMA权重在最优和最劣模式评价中基本一致,模拟效果最好的两种模式为ACCESS-ESM1-5、INM-CM5-0。BMA集合模拟结果优于AVG方法,CN05.1、BMA、AVG方法得到的中国多年平均气温分别为6.18、5.95和4.92℃,BMA方法通过权重调节使整体系统误差最小。BMA和AVG方法集合的CMIP6气候模式在对中国气温模拟的空间分布形式上与实测差距不大,而局部地域分布情况有所区别。BMA方法不仅可以对CMIP6模式进行有效评估,并且其集合模拟结果的时间及空间变化情况都与实测值更接近。 展开更多
关键词 CMIP6 气候模式 中国气温 贝叶斯模型平均 集合模拟
在线阅读 下载PDF
Stock price index analysis of four OPEC members:a Bayesian approach
11
作者 Saman Hatamerad Hossain Asgharpur +1 位作者 Bahram Adrangi Jafar Haghighat 《Financial Innovation》 2024年第1期1107-1135,共29页
This study examines the relationship between macroeconomic variables and stock price indices of four prominent OPEC oil-exporting members.Bayesian model averaging(BMA)and regularized linear regression(RLR)are employed... This study examines the relationship between macroeconomic variables and stock price indices of four prominent OPEC oil-exporting members.Bayesian model averaging(BMA)and regularized linear regression(RLR)are employed to address uncertainties arising from different estimation models and variable selection.Jointness is utilized to determine the nature of relationships among variable pairs.The case study spans macroeconomic variables and stock prices from 1996 to 2018.BMA findings reveal a strong positive association between stock price indices and both consumer price index(CPI)and broad money growth in each analyzed OPEC country.Additionally,the study suggests a weak negative correlation between OPEC oil prices and the stock price index.RLR results align with BMA analysis,offering insights valuable for policymakers and international wealth managers. 展开更多
关键词 EQUITIES MACROECONOMICS bayesian model averaging bayesian estimation Regularized linear regression OPEC countries
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
12
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
清江流域降水的多模式BMA概率预报试验 被引量:12
13
作者 祁海霞 彭涛 +4 位作者 林春泽 彭婷 吉璐莹 李兰 孟翠丽 《气象》 CSCD 北大核心 2020年第1期108-118,共11页
基于TIGGE资料中的ECMWF、UKMO、JMA、CMA四套模式的2016年6月1至7月31日逐日降水集合预报资料,结合清江流域10个国家基准站观测数据,建立了流域贝叶斯模型平均(BMA)概率预报模型,开展流域多模式集合BMA技术的概率预报试验与评估。结果... 基于TIGGE资料中的ECMWF、UKMO、JMA、CMA四套模式的2016年6月1至7月31日逐日降水集合预报资料,结合清江流域10个国家基准站观测数据,建立了流域贝叶斯模型平均(BMA)概率预报模型,开展流域多模式集合BMA技术的概率预报试验与评估。结果表明,在清江流域多模式集合的BMA模型最佳滑动训练期长度为40 d,BMA模型预报比原始集合预报有更高预报技巧,比四个原始集合预报MAE平均值减少近11%左右,而对于CRPS除了CMA中心无订正效果外,较其他三个模式平均值提高近15%左右。多模式集合BMA技术能预报降水全概率PDF曲线和大于某个降水量级的概率,同时能给出确定性降水预报,对于极端强降水(大暴雨一特大暴雨量级),BMA 75~90百分位数预报效果较好,对于强降水(暴雨量级),BMA 50~75百分位数预报效果较好,对于一般性降水(小雨一大雨量级),BMA确定性预报结果或50百分位数预报效果较好。 展开更多
关键词 TIGGE 贝叶斯模型平均(bma) 多模式集合 概率预报
在线阅读 下载PDF
基于TIGGE多模式集合的24小时气温BMA概率预报 被引量:37
14
作者 刘建国 谢正辉 +1 位作者 赵琳娜 贾炳浩 《大气科学》 CSCD 北大核心 2013年第1期43-53,共11页
利用TIGGE(THORPEXInteractiveGrandGlobalEnsemble)单中心集合预报系统(ECMWF、UnitedKingdomMeteorologicalOffice、ChinaMeteorologicalAdministration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结... 利用TIGGE(THORPEXInteractiveGrandGlobalEnsemble)单中心集合预报系统(ECMWF、UnitedKingdomMeteorologicalOffice、ChinaMeteorologicalAdministration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结合淮河流域地面观测率定贝叶斯模型平均(Bayesianmodelaveraging,BMA)参数,从而建立地面日均气温BMA概率预报模型。由此针对淮河流域进行地面日均气温BMA概率预报及其检验与评估,结果表明BMA模型比原始集合预报效果好;单中心的BMA概率预报都有较好的预报效果,其中ECMWF最好。多中心模式超级集合比单中心BMA概率预报效果更好,采用可替换原则比普通的多中心模式超级集合BMA模型计算量小,且在上述BMA集合预报系统中效果最好。它与原始集合预报相比其平均绝对误差减少近7%,其连续等级概率评分提高近10%。基于采用可替换原则的多中心模式超级集合BMA概率预报,针对研究区域提出了极端高温预警方案,这对防范高温天气有着重要意义。 展开更多
关键词 贝叶斯模型平均 TIGGE 地面日均气温 集合预报 概率预报
在线阅读 下载PDF
中国环境规制政策工具的比较与选择——基于贝叶斯模型平均(BMA)方法的实证研究 被引量:134
15
作者 王红梅 《中国人口·资源与环境》 CSSCI CSCD 北大核心 2016年第9期132-138,共7页
改革开放以来,中国政府逐步构建起了命令—控制型、市场激励型、公众参与型和自愿行动型"四维一体"的环境政策工具体系。针对不同政策类型工具的有效性,很多学者已经运用多种方法进行了大量研究,但大多数学者只关注其中某一... 改革开放以来,中国政府逐步构建起了命令—控制型、市场激励型、公众参与型和自愿行动型"四维一体"的环境政策工具体系。针对不同政策类型工具的有效性,很多学者已经运用多种方法进行了大量研究,但大多数学者只关注其中某一种工具的治理效果,同时考虑所有政策工具效果的文献并不多见。本文首次运用贝叶斯模型平均(BMA)方法实证分析了不同类型环境政策工具在当前中国环境治理体系下的相对贡献程度,实证结果表明:命令—控制型工具和市场激励型工具仍然是当前中国治理环境污染最为有效的政策工具,公众参与型工具和自愿行动型工具的有效性相对较差。基于此,本文的政策建议是:首先,中国政府不仅需要构建完善的环保法律法规体系,更需要加大环保执法投入,提升环保执法的主动性;其次,中国政府应该进一步完善市场激励型工具,建立更加弹性化的排污收费标准和更为严格的排污惩罚制度,推动排污权交易制度更广泛地实施;再次,积极推动社会公众参与环境保护,降低社会公众的参与成本,使得社会公众能更加便捷地参与环境治理;最后,积极鼓励非政府组织、企业发起自愿性环保项目,对于推动环保标准的提升和环保法律法规的逐步完善,加强居民、企业的环境保护意识具有重要意义。因此,全社会环境问题的治理是一个系统性工程,必须采取相应的措施,充分运用命令—控制、市场激励、公众参与、自愿行动等正式和非正式的环境治理措施,形成一个有机、有序的环境治理体系,才能提升所有环境规制政策工具的有效性,促进经济社会可持续发展。 展开更多
关键词 环境规制政策工具 贝叶斯模型平均 绩效评价 中国
在线阅读 下载PDF
中国经济增长的决定因素分析——基于贝叶斯模型平均(BMA)方法的实证研究 被引量:5
16
作者 王亮 刘金全 《统计与信息论坛》 CSSCI 2010年第9期3-7,共5页
采用贝叶斯模型平均(Bayesian Model Averaging)方法,使用1990-2007年省际数据,对长期影响中国经济增长的诸多因素的有效性和稳健性进行了识别和检验。研究结论表明:高等教育发展阶段、工业化推进速度、对外开放程度、东部区位优势、消... 采用贝叶斯模型平均(Bayesian Model Averaging)方法,使用1990-2007年省际数据,对长期影响中国经济增长的诸多因素的有效性和稳健性进行了识别和检验。研究结论表明:高等教育发展阶段、工业化推进速度、对外开放程度、东部区位优势、消费能力和对内开放水平等6个解释变量对中国经济增长具有长期、持续和稳健的影响,是中国经济增长的长期决定因素。城市规模、中部区位优势和初始经济条件等3个解释变量对经济增长也具有一定的解释能力。此外,从解释变量对经济增长边际影响的程度来看,工业化推进速度变量对经济增长的边际影响最强,其次是消费能力变量和对外开放程度变量。 展开更多
关键词 增长回归 模型不确定性 贝叶斯模型平均
在线阅读 下载PDF
基于贝叶斯模型平均法的洪泽湖水位预报研究
17
作者 杨昌文 王超 +1 位作者 雷晓辉 许珂 《海河水利》 2025年第1期80-86,共7页
贝叶斯模型平均法提供了一种统计框架,用于评估和比较多个候选模型。它通过结合多个模型的预测结果并对它们的权重进行估计,从而提供更准确和鲁棒的预测和推断结果。利用长短期记忆网络(LSTM)、埃尔曼网络(Elman)、控制循环单元(GRU)等... 贝叶斯模型平均法提供了一种统计框架,用于评估和比较多个候选模型。它通过结合多个模型的预测结果并对它们的权重进行估计,从而提供更准确和鲁棒的预测和推断结果。利用长短期记忆网络(LSTM)、埃尔曼网络(Elman)、控制循环单元(GRU)等循环神经网络建立了洪泽湖水位预报模型,并在此基础上运用BMA方法对这3个模型的预测结果进行组合与验证。结果表明,基于贝叶斯组合方法的BMA组合模型较单一模型预测精度更高,提高了预报的稳定性。 展开更多
关键词 贝叶斯平均模型 洪泽湖 水位预报 模型集合
在线阅读 下载PDF
线性模型下的模型平均方法比较
18
作者 付利亚 杨佳音 +1 位作者 宋亚飞 李海霞 《西北师范大学学报(自然科学版)》 2025年第2期1-9,共9页
模型平均的研究主要包含贝叶斯模型平均和频率模型平均两个方向.从模型平均方法的原理、算法方面介绍了不同先验信息下的贝叶斯模型平均、改进贝叶斯模型后验概率的D-概率方法、Jackknife模型平均、Mallows模型平均以及基于AIC,AICc,BI... 模型平均的研究主要包含贝叶斯模型平均和频率模型平均两个方向.从模型平均方法的原理、算法方面介绍了不同先验信息下的贝叶斯模型平均、改进贝叶斯模型后验概率的D-概率方法、Jackknife模型平均、Mallows模型平均以及基于AIC,AICc,BIC三种信息准则的模型平均,并通过模拟试验综合比较了不同模型平均方法的优劣.模拟结果表明,频率模型平均一般优于贝叶斯模型平均,其中Jackknife模型平均具有明显优势. 展开更多
关键词 贝叶斯模型平均 频率模型平均 D-概率 组合权重 备选模型
在线阅读 下载PDF
基于贝叶斯模型平均(BMA)方法的中国房地产价格影响因素分析 被引量:1
19
作者 卢二坡 张超 《长安大学学报(社会科学版)》 2016年第4期68-76,共9页
对可能影响中国房价的诸多因素的重要性问题进行识别和检验,基于模型不确定性的视角,使用中国30个省(区)2002~2013年面板数据,采用贝叶斯模型平均(BMA)方法进行模型设定与分析。研究认为,在可能对中国房价产生影响的19个指标中,信... 对可能影响中国房价的诸多因素的重要性问题进行识别和检验,基于模型不确定性的视角,使用中国30个省(区)2002~2013年面板数据,采用贝叶斯模型平均(BMA)方法进行模型设定与分析。研究认为,在可能对中国房价产生影响的19个指标中,信贷政策、心理预期、物价水平、房屋竣工面积和产业结构合理化等5个解释变量的后验概率大于90%,它们是影响现阶段中国房地产价格的决定因素;应通过差别化的信贷政策分区域控制房价,通过新闻媒体公开统计和发布房地产数据正确引导人们的心理预期,通过适宜的货币政策有效控制物价,通过保障性住房建设增加房地产供给,通过合理化的产业结构引导房价调控等,促进中国房地产市场的健康发展。 展开更多
关键词 房地产价格 贝叶斯模型平均方法 心理预期 信贷政策 产业结构
在线阅读 下载PDF
中国生产性服务业发展的影响因素分析——基于贝叶斯模型平均(BMA)方法的实证研究 被引量:5
20
作者 张超 郑长娟 《山东财经大学学报》 2018年第2期43-51,59,共10页
基于模型不确定性视角,选取2004-2015年省际面板数据,尝试利用贝叶斯模型平均方法对影响中国生产性服务业发展的重要因素予以识别和检验。研究结论表明:在事先选取的16个解释变量中,服务效率、工业化程度、经济发展水平、劳动力投入以... 基于模型不确定性视角,选取2004-2015年省际面板数据,尝试利用贝叶斯模型平均方法对影响中国生产性服务业发展的重要因素予以识别和检验。研究结论表明:在事先选取的16个解释变量中,服务效率、工业化程度、经济发展水平、劳动力投入以及人口老龄化等5个解释变量是影响中国生产性服务业发展的主导因素,此外,专业化程度、人力资本投入以及基础设施水平等3个解释变量对生产性服务业发展也具有较好的解释能力。同时,证实了BMA方法在处理模型不确定性问题上优于单一模型。最后,提出了经济新常态下加快生产性服务业发展的政策建议。 展开更多
关键词 生产性服务业 影响因素 模型不确定性 贝叶斯模型平均方法
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部