期刊文献+
共找到1,131篇文章
< 1 2 57 >
每页显示 20 50 100
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
1
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 bayesian neural networks(bnNs) convolution neural networks(CNN) bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
Bayesian network-based survival prediction model for patients having undergone post-transjugular intrahepatic portosystemic shunt for portal hypertension
2
作者 Rong Chen Ling Luo +3 位作者 Yun-Zhi Zhang Zhen Liu An-Lin Liu Yi-Wen Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1859-1870,共12页
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi... BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT. 展开更多
关键词 bayesian network CIRRHOSIS Portal hypertension Transjugular intrahepatic portosystemic shunt Survival prediction model
在线阅读 下载PDF
Building Bayesian Network(BN)-Based System Reliability Model by Dual Genetic Algorithm(DGA)
3
作者 游威振 钟小品 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期914-918,共5页
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con... A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples. 展开更多
关键词 bayesian network(bn)model dual genetic algorithm(DGA) system reliability historical data
在线阅读 下载PDF
融合LDA-BN的船舶碰撞事故致因分析
4
作者 邵波 刘巧 +2 位作者 柯善钢 郑霞忠 贺语琴 《安全与环境学报》 北大核心 2025年第1期157-164,共8页
为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报... 为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报告,提取27个事故致因主题;其次,利用事故树方法厘清调查报告中致因间的影响关系,构建事故致因贝叶斯网络结构,使用期望最大化算法进行贝叶斯网络参数学习,确定各节点的条件概率,构建事故致因贝叶斯网络模型;最后,通过逆向推理分析、最大致因链分析及敏感性分析,找出导致船舶碰撞事故发生的主要致因因素。结果显示:安全管理不到位、疏忽瞭望、事发水域通航环境复杂是引发船舶碰撞事故可能性大的致因,航线保持不当、应急处置不当、违规穿越锚地是导致船舶碰撞事故发生的最敏感致因因素。 展开更多
关键词 安全社会工程 船舶碰撞 狄利克雷分布主题模型 贝叶斯网络 事故致因
在线阅读 下载PDF
Estimating survival benefit of adjuvant therapy based on a Bayesian network prediction model in curatively resected advanced gallbladder adenocarcinoma 被引量:10
5
作者 Zhi-Min Geng Zhi-Qiang Cai +9 位作者 Zhen Zhang Zhao-Hui Tang Feng Xue Chen Chen Dong Zhang Qi Li Rui Zhang Wen-Zhi Li Lin Wang Shu-Bin Si 《World Journal of Gastroenterology》 SCIE CAS 2019年第37期5655-5666,共12页
BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC... BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC as well as to identify the role of adjuvant therapy.METHODS Patients with curatively resected advanced gallbladder adenocarcinoma(T3 and T4)were selected from the Surveillance,Epidemiology,and End Results database between 2004 and 2015.A survival prediction model based on Bayesian network(BN)was constructed using the tree-augmented na?ve Bayes algorithm,and composite importance measures were applied to rank the influence of factors on survival.The dataset was divided into a training dataset to establish the BN model and a testing dataset to test the model randomly at a ratio of 7:3.The confusion matrix and receiver operating characteristic curve were used to evaluate the model accuracy.RESULTS A total of 818 patients met the inclusion criteria.The median survival time was 9.0 mo.The accuracy of BN model was 69.67%,and the area under the curve value for the testing dataset was 77.72%.Adjuvant radiation,adjuvant chemotherapy(CTx),T stage,scope of regional lymph node surgery,and radiation sequence were ranked as the top five prognostic factors.A survival prediction table was established based on T stage,N stage,adjuvant radiotherapy(XRT),and CTx.The distribution of the survival time(>9.0 mo)was affected by different treatments with the order of adjuvant chemoradiotherapy(cXRT)>adjuvant radiation>adjuvant chemotherapy>surgery alone.For patients with node-positive disease,the larger benefit predicted by the model is adjuvant chemoradiotherapy.The survival analysis showed that there was a significant difference among the different adjuvant therapy groups(log rank,surgery alone vs CTx,P<0.001;surgery alone vs XRT,P=0.014;surgery alone vs cXRT,P<0.001).CONCLUSION The BN-based survival prediction model can be used as a decision-making support tool for advanced GBC patients.Adjuvant chemoradiotherapy is expected to improve the survival significantly for patients with node-positive disease. 展开更多
关键词 GALLBLADDER CARCINOMA bayesian network Surgery ADJUVANT therapy Prediction model
在线阅读 下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
6
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A bayesian regularized BP neural network model sum of square weights
在线阅读 下载PDF
Bayesian networks modeling for thermal error of numerical control machine tools 被引量:7
7
作者 Xin-hua YAO Jian-zhong FU Zi-chen CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1524-1530,共7页
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also... The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy. 展开更多
关键词 bayesian networks bns) Thermal error model Numerical control (NC) machine tool
在线阅读 下载PDF
基于改进DEMATEL-ISM-BN的人因视角下煤矿事故致因研究
8
作者 赵天亮 王冰山 +7 位作者 台发强 姜琦 王永杰 代宗 常金鹏 马晟翔 傅贵 姜伟 《安全与环境工程》 北大核心 2025年第1期91-99,117,共10页
为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入... 为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入水平等14项指标的人因视角下煤矿事故影响因素体系,并运用基于灰色理论(Grey theory)和贝叶斯网络(BN)的决策试验与评价实验室法与解释结构模型(DEMATEL-ISM)对影响因素进行了分析,得到了各影响因素的关键程度、层次关系、作用路径和人因视角下煤矿事故最大致因链路径。结果表明:首先,利用Grey-DEMATEL法研究分析各影响因素中心度与原因度,识别出安全培训水平、员工安全意识水平、员工知识技能水平、员工安全心理水平等主要影响因素;然后,利用ISM法划分影响因素间的层次关系,得到安全文化水平是本质影响因素,规章制度完善和实施水平、安全投入水平、纠正问题水平等11个因素是过渡影响因素,违章指挥、违规作业是表层影响因素;最后,运用构建的BN模型反向诊断推理得到最大致因路径。研究结果可为人因视角下煤矿事故预防研究提供理论依据和决策支撑。 展开更多
关键词 煤矿事故 人因分析 灰色理论 决策试验与评价实验室法(DEMATEL) 解释结构模型(ISM) 贝叶斯网络(bn)
在线阅读 下载PDF
Reliability Modeling and Evaluation of Complex Multi-State System Based on Bayesian Networks Considering Fuzzy Dynamic of Faults 被引量:3
9
作者 Fangjun Zuo Meiwei Jia +2 位作者 Guang Wen Huijie Zhang Pingping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期993-1012,共20页
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona... In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools. 展开更多
关键词 bayesian network(bn) dynamics FUZZY MULTI-STATE
在线阅读 下载PDF
Winning Probability Estimation Based on Improved Bradley-Terry Model and Bayesian Network for Aircraft Carrier Battle 被引量:1
10
作者 Yuhui Wang Wei Wang Qingxian Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第2期39-44,共6页
To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are cl... To provide a decision-making aid for aircraft carrier battle,the winning probability estimation based on Bradley-Terry model and Bayesian network is presented. Firstly,the armed forces units of aircraft carrier are classified into three types,which are aircraft,ship and submarine. Then,the attack ability value and defense ability value for each type of armed forces are estimated by using BP neural network,whose training results of sample data are consistent with the estimation results. Next,compared the assessment values through an improved Bradley-Terry model and constructed a Bayesian network to do the global assessment,the winning probabilities of both combat sides are obtained. Finally,the winning probability estimation for a navy battle is given to illustrate the validity of the proposed scheme. 展开更多
关键词 aircraft carrier battle BP neural network Bradley-Terry model bayesian networks
在线阅读 下载PDF
Bayesian network structure learning by dynamic programming algorithm based on node block sequence constraints
11
作者 Chuchao He Ruohai Di +1 位作者 Bo Li Evgeny Neretin 《CAAI Transactions on Intelligence Technology》 2024年第6期1605-1622,共18页
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose... The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks. 展开更多
关键词 bayesian network(bn) dynamic programming(DP) node block sequence strongly connected component(SCC) structure learning
在线阅读 下载PDF
Linking Structural Equation Modeling with Bayesian Network and Its Application to Coastal Phytoplankton Dynamics in the Bohai Bay
12
作者 XU Xiao-fu SUN Jian +2 位作者 NIE Hong-tao YUAN De-kui TAO Jian-hua 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期733-748,共16页
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e... Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay. 展开更多
关键词 structural equation modeling bayesian networks ecological modeling Bohai Bay phytoplankton dynamics
在线阅读 下载PDF
Research on Bayesian Network Based User's Interest Model
13
作者 ZHANG Weifeng XU Baowen +1 位作者 CUI Zifeng XU Lei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期809-813,共5页
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing ... It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability. 展开更多
关键词 bayesian network interest model feature selection
在线阅读 下载PDF
Bayesian Network Model of Product Information Diffusion and Reasoning of Influence
14
作者 Xuehua Sun Shaojie Hou +2 位作者 Ning Cai Wenxiu Ma Surui Zhao 《Journal of Data Analysis and Information Processing》 2020年第4期267-281,共15页
Information diffusion on social media has become a key strategy in people’s daily interactions. This paper studies consumers’ participation in the product information diffusion, and analyzes the complexity of inform... Information diffusion on social media has become a key strategy in people’s daily interactions. This paper studies consumers’ participation in the product information diffusion, and analyzes the complexity of information diffusion which is affected by many factors. Prior investigations of information diffusion have primarily focused on the composition of diffusion networks with independent factors and the intricacy of the process has not been completely evaluated. The majority of prior investigations have focused on strategies and the moving forces in social media processes and the determination of influential seed nodes, with few evaluations conducted about the factors affecting consumers’ choices in information diffusion. In this study, a Bayesian network model of product information diffusion was created to examine the links between factors and consumer deportment. It revealed how those factors had an impact on each other and on consumer deportment choice. The innovation of the thesis is reflected in the exploration and analysis of the specific communication path of product information diffusion, which provides a better marketing idea and practical method for the development of mobile e-commerce. The research findings can help identify the quantitative relationships between the factors affecting the process of product information diffusion and user behavior. 展开更多
关键词 Product Information Diffusion bayesian network model Influence Reasoning Consumer Behaviors Clique Tree
在线阅读 下载PDF
Bayesian Network and Factor Analysis for Modeling Pine Wilt Disease Prevalence
15
作者 Mingxiang Huang Liang Guo +1 位作者 Jianhua Gong Weijun Yang 《Journal of Software Engineering and Applications》 2013年第3期13-17,共5页
A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times... A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times. Seven factors that influence the distribution of PWD were extracted from the QuickBird images and were used as the independent variables. The results showed that the BN model predicted PWD with high accuracy. In a sensitivity analysis, elevation (EL), the normal differential vegetation index (NDVI), the distance to settlements (DS) and the distance to roads (DR) were strongly associated with PWD prevalence, and slope (SL) exhibited the weakest association with PWD prevalence. The study showed that BN is an effective tool for modeling PWD prevalence and quantifying the impact of various factors. 展开更多
关键词 PINE WILT Disease bayesian network modelING Factor Analysis
在线阅读 下载PDF
BT-BN在大型商业综合体火灾动态风险分析中的应用
16
作者 陈文涛 张兴露 杨志全 《消防科学与技术》 北大核心 2025年第4期491-496,510,共7页
为了有效预防大型商业综合体火灾事故,最大限度地避免和降低火灾造成的人员伤亡和财产损失,文章结合蝴蝶结(BT)模型与贝叶斯网络(BN)模型,对大型商业综合体火灾事故发生概率进行动态风险分析。在近年来历史数据的基础上,利用BT模型辨识... 为了有效预防大型商业综合体火灾事故,最大限度地避免和降低火灾造成的人员伤亡和财产损失,文章结合蝴蝶结(BT)模型与贝叶斯网络(BN)模型,对大型商业综合体火灾事故发生概率进行动态风险分析。在近年来历史数据的基础上,利用BT模型辨识大型商业综合体火灾事故发生原因,通过统计数据确定基本事件先验概率,再以GeNie软件为平台将BT模型按照逻辑转化规则转化为BN模型,并根据实际火灾的发展阶段对建立的模型进行优化。以昆明市某大型商业综合体为例,通过节点后验概率、敏感性分析对各节点变量进行分析,提取诱发大型商业综合体火灾的关键因素,验证了建立的BT-BN模型的可行性,同时便于后续针对大型商业综合体消防风险隐患制定相应的管理与技术措施。 展开更多
关键词 风险分析 大型商业综合体 火灾 蝴蝶结模型 贝叶斯网络
在线阅读 下载PDF
Predicting the nephrotoxicity of Chinese herbal medicines based on a Bayesian network model
17
作者 Li-Juan Tan Liang Chen +2 位作者 Jia-Hui Huang Ze-Hai Fang Hong-Jie Liu 《TMR Pharmacology Research》 2022年第1期22-29,共8页
Objective:Based on a Bayesian network model(BNM),we constructed and evaluated a predictive model of Chinese herbal medicines(CHMs)nephrotoxicity,explored its influencing factors,and provided a reference for the preven... Objective:Based on a Bayesian network model(BNM),we constructed and evaluated a predictive model of Chinese herbal medicines(CHMs)nephrotoxicity,explored its influencing factors,and provided a reference for the prevention and control of nephrotoxicity.Methods:We searched for CHMs with nephrotoxicity through academic journals and academic works,screened non-nephrotoxic CHMs,and then tested the correlation between nephrotoxic and non-nephrotoxic CHMs and their four properties,five flavours,and channel tropism.The screened variables were used to construct the Bayesian network model(BNM),predict important factors affecting the nephrotoxicity of Chinese herbal medicines(CHMs),draw the receiver operating characteristic(ROC)curve of the model,and calculate the area under the curve(AUC)to evaluate the forecasting effect of the model.Results:Medicinal property theory(four properties and five flavours)are important factors affecting the nephrotoxicity of CHMs.Nephrotoxic and non-nephrotoxic CHMs are related to their four propertiesand five flavours(P<0.05).BNM showed that sweetness and flatness wereimportant protective factors for nephrotoxicity of CHMs;the prediction accuracy was 77.92%,the AUC result of the model ROC curve was 0.661(95%CI:0.620-0.701),and the best sensitivity(0.736)and specificity(0.571)were obtained at 0.65.Discussion:Modern mathematical statistics and modeling methods have certain reference significance and application value for the prediction of CHMs nephrotoxicity and toxicology research. 展开更多
关键词 Chinese herbal medicines four properties five flavours channel tropism prediction of nephrotoxicity bayesian network model
在线阅读 下载PDF
常规公交风险的SEM与Bayesian Network组合评估方法研究 被引量:4
18
作者 宗芳 于萍 +1 位作者 吴挺 陈相茹 《交通信息与安全》 CSCD 北大核心 2018年第4期22-28,共7页
常规公交系统具有载客量大、班次多、线路固定等特点,存在多种安全风险隐患。为综合评估常规公交风险,对国内外554条事故数据分析整理,构建了常规公交风险指标体系。建立了常规公交风险评估的结构方程模型,得到常规公交风险因素对事故... 常规公交系统具有载客量大、班次多、线路固定等特点,存在多种安全风险隐患。为综合评估常规公交风险,对国内外554条事故数据分析整理,构建了常规公交风险指标体系。建立了常规公交风险评估的结构方程模型,得到常规公交风险因素对事故的单向拓扑结构。在结构学习的基础上,利用信息熵理论研究风险因素对预测结果可信度的影响权重,从而进行变量筛选。以失火事故为例利用贝叶斯网络模型进行了城市常规公交风险评估参数学习。研究结果表明,失火事故的主要风险因素为油气泄漏、车内外温度均较高等。在风险因素组合作用下失火事故发生概率范围为0.002 1至0.842 9。所建模型预测精度高,验证了方法的科学性和准确性,可用于进行定量化的常规公交风险评估。 展开更多
关键词 风险评估 常规公交 结构方程模型 贝叶斯网络模型 信息熵
在线阅读 下载PDF
强降雨情景下附着式升降脚手架事故致因IFRAM-BN模型 被引量:1
19
作者 陈伟 赵卓雅 +2 位作者 牛力 温道云 罗浩 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期44-52,共9页
强降雨事件频发造成附着式升降脚手架事故剧增,为提高强降雨情景下施工安全性,降低事故发生率,提出一种基于改进的功能共振分析模型(IFRAM)和贝叶斯网络(BN)相结合的事故致因分析模型。首先,从定性角度,利用IFRAM识别事故机制并深度挖... 强降雨事件频发造成附着式升降脚手架事故剧增,为提高强降雨情景下施工安全性,降低事故发生率,提出一种基于改进的功能共振分析模型(IFRAM)和贝叶斯网络(BN)相结合的事故致因分析模型。首先,从定性角度,利用IFRAM识别事故机制并深度挖掘系统功能共振情况;其次,将IFRAM映射至BN定量分析模型,并引入联系云优化计算各根节点的先验概率;最后,以西安“9·10”事故为例,进行实证研究并提出相应预防措施。结果表明:事故在安全状态为Ⅳ级时,发生的可能性最大。工人违规操作、未进行旁站等强制性监督、强降雨等是导致爬架事故的核心致因;强降雨环境→雨后架体载荷超载等致因组合是诱发爬架事故的关键。 展开更多
关键词 强降雨 附着式升降脚手架 事故致因 改进的功能共振分析模型(IFRAM) 贝叶斯网络(bn) 联系云
在线阅读 下载PDF
基于STPA-BN的船舶航行人为风险因素分析与评估 被引量:1
20
作者 崔秀芳 曲晓文 《船舶工程》 CSCD 北大核心 2024年第8期110-116,共7页
人为因素是引发船舶事故的最主要因素之一,为了研究船舶人为风险因素的因果关系,从中国海事局发布的船舶事故报告出发,引入系统理论过程分析-贝叶斯网络(STPA-BN)模型对船舶航行人为风险因素进行分析和评估。采用系统理论过程分析(STPA... 人为因素是引发船舶事故的最主要因素之一,为了研究船舶人为风险因素的因果关系,从中国海事局发布的船舶事故报告出发,引入系统理论过程分析-贝叶斯网络(STPA-BN)模型对船舶航行人为风险因素进行分析和评估。采用系统理论过程分析(STPA)方法识别出船舶航行中存在的不安全控制行为,结合事故报告内容提取出12种人为风险因素,利用风险因素的内在因果关系和结构学习功能构建贝叶斯网络拓扑结构;将事故报告量化,并对网络进行参数学习,对模型进行验证。在此基础上,利用贝叶斯网络(BN)的推理功能得到船舶航行中7种突出的人为风险因素和3条事故核心致因链,为保障船舶安全航行与船员培训提供数据支持。 展开更多
关键词 船舶航行安全 人为风险因素 系统理论过程分析方法 贝叶斯网络 船舶事故报告
原文传递
上一页 1 2 57 下一页 到第
使用帮助 返回顶部