Traditional background model methods often require complicated computations, and are sensitive to illumination and shadow. In this paper, we propose a block-based background modeling method, and use our proposed metho...Traditional background model methods often require complicated computations, and are sensitive to illumination and shadow. In this paper, we propose a block-based background modeling method, and use our proposed method to combine color and texture characteristics. Suppression and relaxation are the two key strategies to resist illumination changes and shadow disturbance. The proposed method is quite efficient and is capable of resisting illumination changes. Experimental results show that our method is suitable for real-word scenes and real-time applications.展开更多
This paper proposes a novel method, primarily based on the fuzzy adaptive resonance theory (ART) neural network with forgetting procedure, for moving object detection and background modeling in natural scenes. With ...This paper proposes a novel method, primarily based on the fuzzy adaptive resonance theory (ART) neural network with forgetting procedure, for moving object detection and background modeling in natural scenes. With the ability, inheriting from the ART neural network, of extracting patterns from arbitrary sequences, the background model based on the proposed method can learn new scenes quickly and accurately. To guarantee that a long-life model can derived from the proposed mothed, a forgetting procedure is employed to find the neuron that needs to be discarded and reconstructed, and the finding procedure is based on a neural network which can find the extreme value quickly. The results of a suite of quantitative and qualitative experiments conducted verify that for processes of modeling background and detecting moving objects our method is more effective than five other proven methods with which it is compared.展开更多
In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space...In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.展开更多
A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models ...A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis...Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.展开更多
A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence...A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.展开更多
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back...Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.展开更多
In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference alg...In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.展开更多
A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstl...A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.展开更多
In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance mo...In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance model. In multi-dimension SVM crowd detection, many features are available to track the object robustly with three main features which include 1) identification of an object by gray scale value, 2) histogram of oriented gradients (HOG) and 3) local binary pattern (LBP). We propose two more powerful features namely gray level co-occurrence matrix (GLCM) and Gaber feature for more accurate and authenticate tracking result. To combine and process the corresponding SVMs obtained from each features, a new collaborative strategy is developed on the basis of the confidence distribution of the video samples which are weighted by entropy method. We have adopted subspace evolution strategy for reconstructing the image of the object by constructing an update model. Also, we determine reconstruction error from the samples and again automatically build an update model for the target which is tracked in the video sequences. Considering the movement of the targeted object, occlusion problem is considered and overcome by constructing a collaborative model from that of appearance model and update model. Also if update model is of discriminative model type, binary classification problem is taken into account and overcome by collaborative model. We run the multi-view SVM tracking method in real time with subspace evolution strategy to track and detect the moving objects in the crowded scene accurately. As shown in the result part, our method also overcomes the occlusion problem that occurs frequently while objects under rotation and illumination change due to different environmental conditions.展开更多
基金supported by the Asia University under Grant No.100-ASIA-38
文摘Traditional background model methods often require complicated computations, and are sensitive to illumination and shadow. In this paper, we propose a block-based background modeling method, and use our proposed method to combine color and texture characteristics. Suppression and relaxation are the two key strategies to resist illumination changes and shadow disturbance. The proposed method is quite efficient and is capable of resisting illumination changes. Experimental results show that our method is suitable for real-word scenes and real-time applications.
文摘This paper proposes a novel method, primarily based on the fuzzy adaptive resonance theory (ART) neural network with forgetting procedure, for moving object detection and background modeling in natural scenes. With the ability, inheriting from the ART neural network, of extracting patterns from arbitrary sequences, the background model based on the proposed method can learn new scenes quickly and accurately. To guarantee that a long-life model can derived from the proposed mothed, a forgetting procedure is employed to find the neuron that needs to be discarded and reconstructed, and the finding procedure is based on a neural network which can find the extreme value quickly. The results of a suite of quantitative and qualitative experiments conducted verify that for processes of modeling background and detecting moving objects our method is more effective than five other proven methods with which it is compared.
基金supported by National Natural Science Foundation of China(41471387,41631072)
文摘In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.
基金Project(T201221207)supported by the Fundamental Research Fund for the Central Universities,ChinaProject(2012CB725301)supported by National Basic Research and Development Program,China
文摘A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.
基金Project(61172047)supported by the National Natural Science Foundation of China
文摘Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.
文摘A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.
基金This project was supported by the foundation of the Visual and Auditory Information Processing Laboratory of BeijingUniversity of China (0306) and the National Science Foundation of China (60374031).
文摘Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.
文摘A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.
文摘In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance model. In multi-dimension SVM crowd detection, many features are available to track the object robustly with three main features which include 1) identification of an object by gray scale value, 2) histogram of oriented gradients (HOG) and 3) local binary pattern (LBP). We propose two more powerful features namely gray level co-occurrence matrix (GLCM) and Gaber feature for more accurate and authenticate tracking result. To combine and process the corresponding SVMs obtained from each features, a new collaborative strategy is developed on the basis of the confidence distribution of the video samples which are weighted by entropy method. We have adopted subspace evolution strategy for reconstructing the image of the object by constructing an update model. Also, we determine reconstruction error from the samples and again automatically build an update model for the target which is tracked in the video sequences. Considering the movement of the targeted object, occlusion problem is considered and overcome by constructing a collaborative model from that of appearance model and update model. Also if update model is of discriminative model type, binary classification problem is taken into account and overcome by collaborative model. We run the multi-view SVM tracking method in real time with subspace evolution strategy to track and detect the moving objects in the crowded scene accurately. As shown in the result part, our method also overcomes the occlusion problem that occurs frequently while objects under rotation and illumination change due to different environmental conditions.