The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. ...The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.展开更多
In order to reduce the coupling between pitch, yaw and roll channels of the bank-to-turn (BTT) missile caused due to missile body roll. A new structure actuator for reducing the coupling of BTT missiles is studied. ...In order to reduce the coupling between pitch, yaw and roll channels of the bank-to-turn (BTT) missile caused due to missile body roll. A new structure actuator for reducing the coupling of BTT missiles is studied. The new structure actuator can roll independently along the longitudinal axis of the missile. The actu- ator instead of airframe needs to steer when controlling BTT missile roll. So the rolling speed of main airframe and thus the coupling of missile introduced by airframe rolling are reduced. And control logic is designed for the missile using roll actuator. Finally, analysis and simulation results demonstrate the effectiveness of the rolling actuator in decoupling a BTT missile.展开更多
This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix e...This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations, complete parametric control approaches for high-order linear systems are presented. The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices, and produce all the design degrees of freedom. Fur-thermore, important special cases are particularly treated. Based on the proposed parametric design approaches, a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out. The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.展开更多
文摘The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.
文摘In order to reduce the coupling between pitch, yaw and roll channels of the bank-to-turn (BTT) missile caused due to missile body roll. A new structure actuator for reducing the coupling of BTT missiles is studied. The new structure actuator can roll independently along the longitudinal axis of the missile. The actu- ator instead of airframe needs to steer when controlling BTT missile roll. So the rolling speed of main airframe and thus the coupling of missile introduced by airframe rolling are reduced. And control logic is designed for the missile using roll actuator. Finally, analysis and simulation results demonstrate the effectiveness of the rolling actuator in decoupling a BTT missile.
基金Supported by the Major Program of the National Natural Science Foundation of China (Grant No. 60710002)the Program for Changjiang Scholars and Innovative Research Team in University, Self-planed Task of State Key Laboratory of Robotics and System (Grant No.SKLRS200801A03)and the Key Programs of Heilongjiang Province (Grant No. ZJC603)
文摘This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations, complete parametric control approaches for high-order linear systems are presented. The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices, and produce all the design degrees of freedom. Fur-thermore, important special cases are particularly treated. Based on the proposed parametric design approaches, a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out. The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.