The dynamical behaviour of the inorganic bromate oscillator catalyzed by manganese ions in the B-Z reaction is discussed, a three-variable nonlinear dynamical equations of the oscillation phenomena have been obtained,...The dynamical behaviour of the inorganic bromate oscillator catalyzed by manganese ions in the B-Z reaction is discussed, a three-variable nonlinear dynamical equations of the oscillation phenomena have been obtained, and an analytic solution and numerical results of the equations are given.展开更多
The thermokinetic behavior of the B-Z reaction system was influenced by both the chemical reaction-heat conduction coupling and the temperature undulation due to temperature controlling of heat compensation type. Qua...The thermokinetic behavior of the B-Z reaction system was influenced by both the chemical reaction-heat conduction coupling and the temperature undulation due to temperature controlling of heat compensation type. Quantitative research indicated that this kind of temperature fluctuation will lead to limit cycle degeneration and the periodic or quasi-periodic response behavior of the focus near a supercritical Hopf bifurcation .展开更多
An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.Thi...An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.展开更多
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Paclitaxel is one of the commonly used drugs in postoperative chemotherapy for ovarian cancer patients. However, affected by drug dosage and individual differences in the course of medication, patients will have diffe...Paclitaxel is one of the commonly used drugs in postoperative chemotherapy for ovarian cancer patients. However, affected by drug dosage and individual differences in the course of medication, patients will have different degrees of adverse reactions, which will cause damage to the patient’s body once they occur. This paper retrospectively analyzed the clinical data of patients with severe allergic reactions such as fecal incontinence and numbness of hands and feet caused by the use of paclitaxel liposome during postoperative chemotherapy in a case of ovarian cancer admitted to our hospital. The causes and corresponding treatment measures were analyzed, in order to provide the reference for medical staff to take effective countermeasures in advance in the future.展开更多
This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to pr...This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.展开更多
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report a...The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices.展开更多
Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier...Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier heights were well reproduced with a root-mean-square(RMS)error of 1.53 MeV,and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV.Coupled with the Siwek-Wilczyński formula,wherein three parameters were determined by the proposed effective potentials,the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations,such as^(154)Sm and^(238)U.The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr-and 64 Ni-induced reactions,which were related to the synthesis of new super-heavy nuclei.展开更多
Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-5...Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts.展开更多
In this paper, we establish an SIR reaction-diffusion infectious disease model with saturated incidence rate and vaccination. Firstly, we prove the uniform boundedness of the solution of this model. Secondly, we estab...In this paper, we establish an SIR reaction-diffusion infectious disease model with saturated incidence rate and vaccination. Firstly, we prove the uniform boundedness of the solution of this model. Secondly, we establish the threshold dynamic behavior of the model based on the basic reproduction number R0, specifically, we prove the globally asymptotic stability of the disease-free equilibrium and the uniform persistence of the model. Thirdly, we show the existence and stability of the endemic equilibrium of the homogeneous system and obtain different cases of positive solution. Fourthly, we investigate the effects of vaccination rate and saturated incidence rate on the basic reproduction number. The results indicate that increasing vaccination rate and saturation rate can effectively control the transmission of the disease. Finally, we conduct numerical simulations to verify the aforementioned conclusions.展开更多
Wave front solutions and the minimal wave speeds of Noges-Field systems for B-Z chemical reaction are discussed. The sufficient and necessary conditions for the existence of travelling wave front solutions are obtaine...Wave front solutions and the minimal wave speeds of Noges-Field systems for B-Z chemical reaction are discussed. The sufficient and necessary conditions for the existence of travelling wave front solutions are obtained under some conditions. The approximants obtained in [-4] are proved in theory.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Study on the avoidance response of Penaeus chinensis to heavy metals (Pb, Cr, Zn) and heavy metal mixtures (Pb-Cr, Pb-Zn) is carred out using a Y-model avoidance apparatus. The concentrations calculated to induce 50% ...Study on the avoidance response of Penaeus chinensis to heavy metals (Pb, Cr, Zn) and heavy metal mixtures (Pb-Cr, Pb-Zn) is carred out using a Y-model avoidance apparatus. The concentrations calculated to induce 50% avoidance rate byPenaeus chinensis are 11.4, 33.2 and 238. 1 mg/L for Pb, Cr and Zn, respectively. Mixtures of Pb-Cr and Pb-Zn produce additive effect in the avoidance test using Penaeus chinesis. But when the mixed Pb-Zn solution has 0.5 toxic unit Pb and 0.5 toxic unit Zn, the mixture seems to have synergistic effect.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te...High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.展开更多
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle w...Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.展开更多
基金Supported by the Natural Science Foundation of Liaoning Educational Committee(No.9970311012).
文摘The dynamical behaviour of the inorganic bromate oscillator catalyzed by manganese ions in the B-Z reaction is discussed, a three-variable nonlinear dynamical equations of the oscillation phenomena have been obtained, and an analytic solution and numerical results of the equations are given.
文摘The thermokinetic behavior of the B-Z reaction system was influenced by both the chemical reaction-heat conduction coupling and the temperature undulation due to temperature controlling of heat compensation type. Quantitative research indicated that this kind of temperature fluctuation will lead to limit cycle degeneration and the periodic or quasi-periodic response behavior of the focus near a supercritical Hopf bifurcation .
文摘An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
文摘Paclitaxel is one of the commonly used drugs in postoperative chemotherapy for ovarian cancer patients. However, affected by drug dosage and individual differences in the course of medication, patients will have different degrees of adverse reactions, which will cause damage to the patient’s body once they occur. This paper retrospectively analyzed the clinical data of patients with severe allergic reactions such as fecal incontinence and numbness of hands and feet caused by the use of paclitaxel liposome during postoperative chemotherapy in a case of ovarian cancer admitted to our hospital. The causes and corresponding treatment measures were analyzed, in order to provide the reference for medical staff to take effective countermeasures in advance in the future.
文摘This paper, an addendum to “Dialectical Thermodynamics’ solution to the conceptual imbroglio that is the reversible path”, this journal, 10, 775-799, was written in response to the requests of several readers to provide further evidence of the said “imbroglio”. The evidence here presented relates to the incompatibility existing between the total-entropy and the Gibbs energy prescriptions for the reversible path. The previously published proof of the negentropic nature of the transformation of heat into work is here included to validate out conclusions about the Gibbs energy perspective.
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
基金supported by the National Key R&D Program of China (2021YFF0500504)National Natural Science Foundation of China (No. 51976169)the financial supports from the Fundamental Research Funds for the Central Universities。
文摘The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices.
基金supported by the National Natural Science Foundation of China(Nos.12265006,12375129,U1867212)the Innovation Project of Guangxi Graduate Education(No.YCSWYCSW2022176)the Guangxi Natural Science Foundation(2017GXNSFGA198001).
文摘Based on the Skyrme energy density functional and reaction Q-value,this study proposed an effective nucleus-nucleus poten-tial for describing the capture barrier in heavy-ion fusion processes.The 443 extracted barrier heights were well reproduced with a root-mean-square(RMS)error of 1.53 MeV,and the RMS deviations with respect to 144 time-dependent Hartree-Fock capture barrier heights were only 1.05 MeV.Coupled with the Siwek-Wilczyński formula,wherein three parameters were determined by the proposed effective potentials,the measured capture cross sections at energies around the barriers were reasonably well reproduced for several fusion reactions induced by nearly spherical nuclei as well as by nuclei with large deformations,such as^(154)Sm and^(238)U.The shallow capture pockets and small values of the average barrier radii resulted in the reduction of the capture cross sections for 52,54Cr-and 64 Ni-induced reactions,which were related to the synthesis of new super-heavy nuclei.
基金Natural Science Foundation of China(Grant No.NSFC-22072062,22202098)。
文摘Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts.
文摘In this paper, we establish an SIR reaction-diffusion infectious disease model with saturated incidence rate and vaccination. Firstly, we prove the uniform boundedness of the solution of this model. Secondly, we establish the threshold dynamic behavior of the model based on the basic reproduction number R0, specifically, we prove the globally asymptotic stability of the disease-free equilibrium and the uniform persistence of the model. Thirdly, we show the existence and stability of the endemic equilibrium of the homogeneous system and obtain different cases of positive solution. Fourthly, we investigate the effects of vaccination rate and saturated incidence rate on the basic reproduction number. The results indicate that increasing vaccination rate and saturation rate can effectively control the transmission of the disease. Finally, we conduct numerical simulations to verify the aforementioned conclusions.
文摘Wave front solutions and the minimal wave speeds of Noges-Field systems for B-Z chemical reaction are discussed. The sufficient and necessary conditions for the existence of travelling wave front solutions are obtained under some conditions. The approximants obtained in [-4] are proved in theory.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
文摘Study on the avoidance response of Penaeus chinensis to heavy metals (Pb, Cr, Zn) and heavy metal mixtures (Pb-Cr, Pb-Zn) is carred out using a Y-model avoidance apparatus. The concentrations calculated to induce 50% avoidance rate byPenaeus chinensis are 11.4, 33.2 and 238. 1 mg/L for Pb, Cr and Zn, respectively. Mixtures of Pb-Cr and Pb-Zn produce additive effect in the avoidance test using Penaeus chinesis. But when the mixed Pb-Zn solution has 0.5 toxic unit Pb and 0.5 toxic unit Zn, the mixture seems to have synergistic effect.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金the staff at Beamline (BL08U1-A and BL11B)of the Shanghai Synchrotron Radiation Facility (SSRF)the support from the National Key Research&Development Program of China (2022YFB3803700)+2 种基金the National Natural Science Foundation of China (52171186)the support through the Overseas Outstanding Youth Fund and Shanghai Pujiang Talent Project (21PJ1408500)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.
基金supported by the National Natural Science Foundation of China(Nos.12075027,1232509,11961141004,and 12175152)the National Science Foundation(Nos.Phys-2011890 and Phy-1430152)。
文摘Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.