To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed u...To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.展开更多
The effect of C,Mn and heat-treatment on work-hardening of austenitic Mn steel and the work-hardening mechanism have been investigated under non-severe impact loading condition.The results show that the ability of wor...The effect of C,Mn and heat-treatment on work-hardening of austenitic Mn steel and the work-hardening mechanism have been investigated under non-severe impact loading condition.The results show that the ability of work-hardening in- creases with the increase of C and aging tempera- ture but decreases with Mn.The work-hardening with high austenitic stability results mainly from dislocations,and that with low austenitic stability results mainly from combined effects of strain-in- duced martensite and high density of dislocations under non-severe impact loading conditions.The wear resistance of medium manganese steel (Mn7) is 1.64-2.46 times that of Hadfield steel (Mnl3).展开更多
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and...Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases.展开更多
This paper presents the in-situ TEM tensile observation of the nucleation and growth ofmartensite and the dislocation configuration change in metastable austenitic manganesesteels and the investigation of the composit...This paper presents the in-situ TEM tensile observation of the nucleation and growth ofmartensite and the dislocation configuration change in metastable austenitic manganesesteels and the investigation of the composition of phases and the content of elements inthe micro regions by XRD,EDAX respectively and concludes from the results that thestrengthening of martensite transformation and high density of dislocations lead to thehigh work-hardening capacity in the steel.展开更多
The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applicat...The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel.展开更多
Two austenitic Mn steels(Fe-17 Mn and Fe-17 Mn-3 Al(wt%, so as the follows)) were subjected to thermomechanical processing(TMP) consisting of forging followed by solutionization and hot rolling. The rolled samples wer...Two austenitic Mn steels(Fe-17 Mn and Fe-17 Mn-3 Al(wt%, so as the follows)) were subjected to thermomechanical processing(TMP) consisting of forging followed by solutionization and hot rolling. The rolled samples were annealed at 650 and 800°C to relieve the internal stress and to induce recrystallization. The application of TMP and heat treatment to the Fe-17 Mn/Fe-17 Mn-3 Al steels refined the austenite grain size from 169 μm in the as-solutionized state to 9–13 μm, resulting in a substantial increase in hardness from HV 213 to HV 410 for the Fe-17 Mn steel and from HV 210 to HV 387 for the Fe-17 Mn-3 Al steel. The elastic modulus values, as evaluated by the nanoindentation technique, increased from(175 ± 11) to(220 ± 12) GPa and from(163 ± 15) to(205 ± 13) GPa for the Fe-17 Mn and Fe-17 Mn-3 Al steels, respectively. The impact energy of the thermomechanically processed austenitic Mn steels was lower than that of the steels in their as-solutionized state. The addition of Al to the Fe-17 Mn steel decreased the hardness and elastic modulus but increased the impact energy.展开更多
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ...Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.展开更多
In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe-0.28C-1.55Mn-2.06Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the mic...In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe-0.28C-1.55Mn-2.06Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.展开更多
In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation- induced plasticity steel was investigated. The experiments were carried out using hot ...In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation- induced plasticity steel was investigated. The experiments were carried out using hot simulation machine and hot rolling mill, where the samples were cooled at different cooling rates. The results showed that with the increase in cooling rates, film-like retained austenite gradually disappeared and only blocky retained austenite was retained at higher cooling rates. The volume fraction of retained austenite was 9-11% at cooling rates of 0.05-1 ℃/s and 4-6% at cooling rates of 5-10 ℃/s. In addition, martensite/austenite island was observed because of the heterogeneous carbon distribution. The samples cooled at 0.05℃/s and 0.5 ℃/s exhibited excellent mechanical properties, with tensile strengths of 712 MPa and 726 MPa, total elongations of 42% and 36% and strength and ductility balances of 29.91 GPa% and 26.15 GPa%, respectively. During plastic deformation, the instantaneous work hardening exponent of the sample cooled at 0.05 ℃/s increased continuously until it reached the maximum value, while the instantaneous work hardening exponent of the sample cooled at 0.5℃/s remained stable.展开更多
To study the mechanics of work-hardening and annealing-softening, a series of experiments were conducted on samples of 304 austenitic stainless steel sheets. In addition, transmission electron microscopy (TEM), scan...To study the mechanics of work-hardening and annealing-softening, a series of experiments were conducted on samples of 304 austenitic stainless steel sheets. In addition, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and tensile testing were carried out to study changes and mechanisms of the stainless steel structures and properties during work-hardening and annealing-softening. The results indicate that annealing at low temperatures (100-500 ~C) can only remove partial residual stresses in the sample and the softening via annealing is not obvious. Bright annealing and rapid cooling in a protective atmosphere can completely soften the cold-worked material. In addition, the low-temperature sample without a protective atmosphere only has a little oxidation on the surface, but at higher temperature the oxidized layer is very thick. Thus, high-temperature annealing should include bright annealing.展开更多
Medium manganese austenitic steel (MMAS) fabricated through the hot rolling process has been used in the mining,military,and mechanical industries.In this paper,the abrasion performance and hardening mechanism were me...Medium manganese austenitic steel (MMAS) fabricated through the hot rolling process has been used in the mining,military,and mechanical industries.In this paper,the abrasion performance and hardening mechanism were measured under a series of impact energies.The impact wear was tested at different impact energies from 0.5 J to 6 J using a dynamic load abrasive wear tester (MLD-10).Microstructure and surface morphologies were analyzed using scanning electron microscopy,X-Ray diffraction,and transmission electron microscopy.The results suggest that MMSA has the best wear resistance at 3.5 J and the worst wear resistance at 1.5 J.Furthermore,the wear mechanism and worn surface microstructure change with different impact energies.There are small differences between a large amount of martensite on the worn surfaces under different impact energies and the shapes of dislocation and twins change with different impact energies.展开更多
The austenite transformation behavior and mechanical properties of medium manganese steel subjected to tensile strain were studied by electron backscatter diffraction,X-ray diffraction and tensile tests.The results sh...The austenite transformation behavior and mechanical properties of medium manganese steel subjected to tensile strain were studied by electron backscatter diffraction,X-ray diffraction and tensile tests.The results show that the austenite phases are mainly distributed on the grain boundary in the duplex microstructure of austenite and ferrite,and it is easy for the big-size austenite to transform at small beginning tension strain following the mechanisms of both austenite (fcc)→ε- martensite (hcp)→α-martensite (bcc)and austenite (fcc)→α-martensite (bcc).Both yield strength and tensile strength increase with the increase in pre-strain,and the total elongation decreases,while the value of pre-strain plus total elongation almost keeps constant.During tensile deformation,transformation from austenite into martensite improves work-hardening rate remarkably.展开更多
基金supported by the Special Foundation for Introducing and Selecting Talent in Hefei University of Technology, China (No. 2004000197)
文摘To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.
文摘The effect of C,Mn and heat-treatment on work-hardening of austenitic Mn steel and the work-hardening mechanism have been investigated under non-severe impact loading condition.The results show that the ability of work-hardening in- creases with the increase of C and aging tempera- ture but decreases with Mn.The work-hardening with high austenitic stability results mainly from dislocations,and that with low austenitic stability results mainly from combined effects of strain-in- duced martensite and high density of dislocations under non-severe impact loading conditions.The wear resistance of medium manganese steel (Mn7) is 1.64-2.46 times that of Hadfield steel (Mnl3).
基金supported by the National Natural Science Foundation of China(Grant No.52275370)the Key R&D Program of Hubei Province,China(Grant Nos.2022BAD100,2021BAA048)the Open Fund of Hubei Longzhong Laboratory(Grant No.2022ZZ-04).
文摘Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases.
文摘This paper presents the in-situ TEM tensile observation of the nucleation and growth ofmartensite and the dislocation configuration change in metastable austenitic manganesesteels and the investigation of the composition of phases and the content of elements inthe micro regions by XRD,EDAX respectively and concludes from the results that thestrengthening of martensite transformation and high density of dislocations lead to thehigh work-hardening capacity in the steel.
基金financially supported by the National Natural Science Foundation of China (No. 51271035)The financial support of the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation
文摘The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel.
文摘Two austenitic Mn steels(Fe-17 Mn and Fe-17 Mn-3 Al(wt%, so as the follows)) were subjected to thermomechanical processing(TMP) consisting of forging followed by solutionization and hot rolling. The rolled samples were annealed at 650 and 800°C to relieve the internal stress and to induce recrystallization. The application of TMP and heat treatment to the Fe-17 Mn/Fe-17 Mn-3 Al steels refined the austenite grain size from 169 μm in the as-solutionized state to 9–13 μm, resulting in a substantial increase in hardness from HV 213 to HV 410 for the Fe-17 Mn steel and from HV 210 to HV 387 for the Fe-17 Mn-3 Al steel. The elastic modulus values, as evaluated by the nanoindentation technique, increased from(175 ± 11) to(220 ± 12) GPa and from(163 ± 15) to(205 ± 13) GPa for the Fe-17 Mn and Fe-17 Mn-3 Al steels, respectively. The impact energy of the thermomechanically processed austenitic Mn steels was lower than that of the steels in their as-solutionized state. The addition of Al to the Fe-17 Mn steel decreased the hardness and elastic modulus but increased the impact energy.
基金financially supported by the National Natural Science Foundation of China(No.51771125)the Sichuan Province Science and Technology Support Program(No.2020YFG0102)。
文摘Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance.
基金financially supported by the National Natural Science Foundation of China (No. 51501031)the Natural Science Foundation of Liaoning Province (No. 20170520348)
文摘In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe-0.28C-1.55Mn-2.06Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.
基金support from the National Natural Science Foundation of China (No. 51504063)
文摘In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation- induced plasticity steel was investigated. The experiments were carried out using hot simulation machine and hot rolling mill, where the samples were cooled at different cooling rates. The results showed that with the increase in cooling rates, film-like retained austenite gradually disappeared and only blocky retained austenite was retained at higher cooling rates. The volume fraction of retained austenite was 9-11% at cooling rates of 0.05-1 ℃/s and 4-6% at cooling rates of 5-10 ℃/s. In addition, martensite/austenite island was observed because of the heterogeneous carbon distribution. The samples cooled at 0.05℃/s and 0.5 ℃/s exhibited excellent mechanical properties, with tensile strengths of 712 MPa and 726 MPa, total elongations of 42% and 36% and strength and ductility balances of 29.91 GPa% and 26.15 GPa%, respectively. During plastic deformation, the instantaneous work hardening exponent of the sample cooled at 0.05 ℃/s increased continuously until it reached the maximum value, while the instantaneous work hardening exponent of the sample cooled at 0.5℃/s remained stable.
基金Project(2009D005002000003) supported by the Foundation for Fostering Outstanding Talents of Beijing,China
文摘To study the mechanics of work-hardening and annealing-softening, a series of experiments were conducted on samples of 304 austenitic stainless steel sheets. In addition, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and tensile testing were carried out to study changes and mechanisms of the stainless steel structures and properties during work-hardening and annealing-softening. The results indicate that annealing at low temperatures (100-500 ~C) can only remove partial residual stresses in the sample and the softening via annealing is not obvious. Bright annealing and rapid cooling in a protective atmosphere can completely soften the cold-worked material. In addition, the low-temperature sample without a protective atmosphere only has a little oxidation on the surface, but at higher temperature the oxidized layer is very thick. Thus, high-temperature annealing should include bright annealing.
文摘Medium manganese austenitic steel (MMAS) fabricated through the hot rolling process has been used in the mining,military,and mechanical industries.In this paper,the abrasion performance and hardening mechanism were measured under a series of impact energies.The impact wear was tested at different impact energies from 0.5 J to 6 J using a dynamic load abrasive wear tester (MLD-10).Microstructure and surface morphologies were analyzed using scanning electron microscopy,X-Ray diffraction,and transmission electron microscopy.The results suggest that MMSA has the best wear resistance at 3.5 J and the worst wear resistance at 1.5 J.Furthermore,the wear mechanism and worn surface microstructure change with different impact energies.There are small differences between a large amount of martensite on the worn surfaces under different impact energies and the shapes of dislocation and twins change with different impact energies.
文摘The austenite transformation behavior and mechanical properties of medium manganese steel subjected to tensile strain were studied by electron backscatter diffraction,X-ray diffraction and tensile tests.The results show that the austenite phases are mainly distributed on the grain boundary in the duplex microstructure of austenite and ferrite,and it is easy for the big-size austenite to transform at small beginning tension strain following the mechanisms of both austenite (fcc)→ε- martensite (hcp)→α-martensite (bcc)and austenite (fcc)→α-martensite (bcc).Both yield strength and tensile strength increase with the increase in pre-strain,and the total elongation decreases,while the value of pre-strain plus total elongation almost keeps constant.During tensile deformation,transformation from austenite into martensite improves work-hardening rate remarkably.