Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this ...Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this study,we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1(COI1)-mediated JA signaling for this process.Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN(JAZ)repressors during salinity stress-enhanced JA signaling.Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1(ABF1),AREB1/ABF2,ABF3,and AREB2/ABF4,which belong to the basic leucine zipper(bZIP)transcription factor family and respond to salinity stress.Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition.Furthermore,ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-D3A plants.Moreover,ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE(AOS)transcription,but this activation was inhibited by JAZ1.In addition,ABF3 competitively bind to JAZ1,thereby decreasing the interaction between JAZ1 and MYC2,which is the master transcription factor controlling JA signaling.Collectively,our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.展开更多
NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous art...NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous articles have announced that the activated ZAR1 (HopZ-Activated Resistance 1) forms a pentamer in the plasma membrane, which is a calcium permeable channel that can trigger plant immune signaling and cell death. However, the structure of galore NBS-LRRs in Arabidopsis is not yet clear. The functional sites of distinct NBS-LRR in cells may vary. In addition, identifying pathogens and activating defense regions may occur in different subcellular compartments. Therefore, dissecting the specific structure and positioning of NBS-LRRs is an indispensable step in understanding their functions. In this article, we exploit AlphaFold to predict the structure of some designed NBS-LRRs, and utilize Agroinfiltration transient expression system, combined with biochemical fractionation, to dissect the localization of these NBS-LRR receptors from Arabidopsis. Structural data indicates that the identified NBS-LRRs share analogous conformation. Membrane fractionation assay demonstrates these NBS-LRRs are mainly associated with the membrane. These data show that the Ca2+-permeable channel activity may be evolutionarily conserved in NBS-LRR of Arabidopsis, and this study provides some reference clues for analyzing the structure and localization patterns of other plant immune receptors.展开更多
E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that m...E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.展开更多
Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of t...Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of toxic reactive oxygen species(ROS)to suppress seed germination.Controlled deterioration treatment(CDT)is a gen-eral approach for mimicking seed aging.The transcription factor ANAC089 was previously reported to modulate seed primary germination.In this study,we evaluated the ability of ANAC089 to control seed viability during aging.Compared with that in the wild-type line,the mutation of ANAC089 significantly increased H_(2)O_(2),thereby reducing seed viability after CDT,while the overexpression of ANAC089 reduced H_(2)O_(2) and improved seed long-evity,indicating a critical role for ANAC089 in maintaining seed viability through H_(2)O_(2) signaling.A series of stu-dies have shown that ANAC089 targets and negatively regulates the level of ABI5,an important transmitter of abscisic acid(ABA)signals,to affect seed viability after CDT.Furthermore,ABI5 negatively regulated the expres-sion of VTC2,which is involved in the biosynthesis of the antioxidant ascorbic acid and H_(2)O_(2) scavenging.As a result,ANAC089 attenuates the generation of H_(2)O_(2),thereby enhancing seed viability through the ABI5-VTC2 module during the seed aging process.Taken together,our results reveal a novel mechanism by which ANAC089 enhances seed viability by coordinating ABI5 and VTC2 expression,ultimately preventing the overac-cumulation of H_(2)O_(2),which would have led to reduced seed viability.展开更多
[Objective] The 15urpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze th...[Objective] The 15urpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze the physiological characteristics of two Arabidopsis mu- tants and their wild type. [Result] There existed distinct differences in stomata apertures, water loss and leaf temperature compared with wild type except for stomata density. In addition, seed germination test on the medium indicated that cdfl was insensitive to ABA, mannitol and NaCI, but cdsl performed contrary to cdil. [ Conclusion] There are some different physiological characteristics between wild type and mutants.展开更多
[Objective] The aim was to introduce a rapid DNA extraction method for PCR detection of Arabidopsis thaliana.[Method] Through the improvement of conventional DNA extraction method,a rapid Arabidopsis thaliana DNA extr...[Objective] The aim was to introduce a rapid DNA extraction method for PCR detection of Arabidopsis thaliana.[Method] Through the improvement of conventional DNA extraction method,a rapid Arabidopsis thaliana DNA extraction method was obtained.With randomly selected Arabidopsis thaliana transgenic strains and mutants as samples,the method was verified.[Result] After electrophoresis,UV absorption detection,it was found that DNA samples are complete and less pollution,and the result of PCR amplification objective fragment was good which proved DNA is suitable as a template for PCR reaction.After PCR detection,positive plants gene amplified bands were clear,without false-positive,and the test results were satisfactory.[Conclusion] The method is suitable for rapid extraction of Arabidopsis thaliana DNA and PCR detection.展开更多
[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thali...[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thaliana were cultivated by the control group and drought treatment group respectively,Physical signs of Arabidopsis thaliana and contents of glucosinolates were determined after 0,4,5,6,7 d treatment.[Result] The results showed that leaf water content of rosette leaves was obviously decreased,leaf relative conductivity (characterized by membrane permeability) and the concentration of MDA increased,the extent of damage increased with the increased time.Content of total glucosinolate,aliphatic glucosinolate and indole glucosinolate increased got their maximum after 5 days treatment,and rapidly decreased after 6 and 7 days of treatment,even much lower than the control group.Each kind of glucosinolate changed with difference from each other.4MSOB which made the most proportion of the total glucosinolate changed consistently with the total glucosinolate and difference significant.As a whole,aliphatic glucosinolates were more sensitive to drought than indole glucosinolate.The proportion of some kind glucosinolate,like 4MSOB varied had correlation with the content change.[Conclusion] Drought stress had an effects on the contents of total glucosinolate,aliphatic glucosinolate and indole glucosinolate,which made the glucosinolate participated in defense response of plant to the outside of drought stress,but long-term drought stress in leaves was not conducive to the accumulation of glucosinolates.展开更多
[Objective]Analysis of FLC sequence that Vernalization-related genes in Arabidopsis.[Method]Advance through natural populations of Arabidopsis QTL analysis of vernalization response was found on chromosome 5 of Arabid...[Objective]Analysis of FLC sequence that Vernalization-related genes in Arabidopsis.[Method]Advance through natural populations of Arabidopsis QTL analysis of vernalization response was found on chromosome 5 of Arabidopsis thaliana have a flowering-related QTL,this test is to use sequence analysis to determine whether it is with the FLC gene homology.[Result]Arabidopsis thaliana,Italy and Sweden in the 27th,No.461,p.501,p.638,p.738,No.884 different base.While these bases are different,but the codon encoding the first nine amino acids out of the first 167 amino acids,the first 246 amino acids,due to codon degeneracy,encode proteins that are the same.[Conclusion] Arabidopsis has a rich genetic diversity,the FLC gene is highly conserved sequence length,base variable sites rich degenerate codons encoding the same amino acids they are not affect the growth of Arabidopsis thaliana.This indicates that the Arabidopsis genome sequence will be the environment.展开更多
The ultrastructures of the root protophleom sieve element at different developmental stages of Arabidopsis thaliana L. were investigated using the technique of high pressure freezing and freeze substitution fixing spe...The ultrastructures of the root protophleom sieve element at different developmental stages of Arabidopsis thaliana L. were investigated using the technique of high pressure freezing and freeze substitution fixing specimen. The results show that in the development of the sieve elements, the nuclei undergo typical characteristics of the programmed cell death (PCD): the nuclear envelopes form emboli, the chromatin condenses and aggregates towards the nuclear envelope, which degrades and fully disappears later. Before the nucleus degradation, neither the nuclear envelope undulation, nucleus lobe nor marked dilation (or bleb) of perinuclear space could be observed. In the cytoplasm of the mature sieve element, there are starch-like granules separately sheathed with a layer of membrane and usually with mitochondria around. These gnanules seem to provide substrates to mitochondria in their function. Small vacuoles originate from endoplasmic reticulum (ER), and no bigger vacuole was found.展开更多
Ultrastructural changes in the sieve element and dense cells of nectariferous tissue during the development of floral nectary in Arabidopsis thaliana L. were investigated with transmission electron microscopy. Samples...Ultrastructural changes in the sieve element and dense cells of nectariferous tissue during the development of floral nectary in Arabidopsis thaliana L. were investigated with transmission electron microscopy. Samples were prepared with high pressure freezing and freeze substitution techniques. The ultrastructure of dense cell was similar to that of sieve element at its early developmental stage. With the concurrent agglutination of chromatin in the nucleus, the abnormal location of organelles and the high density of cytoplasm, the ultrastructural characteristics in die dense cells of the nectariferous tissue and in the sieve element are matched with those of the programmed cell death in animal and plant reported in recent years. The disorganization of nucleus and most organelles in the differentiation of sieve elements and dense cells is closely associated with the transportation and modification of pre-nectar and the transference of nectar. This suggests that the cytological changes in sieve element and nectariferous tissue are closely associated with the nectary functional activities.展开更多
[Objective] The callus induction of wild Arabidopsis thaliana leaves was studied.[Method] As explants,leaf segments of wild A.thaliana were inoculated in MS medium including 6-BA and NAA with different concentration,a...[Objective] The callus induction of wild Arabidopsis thaliana leaves was studied.[Method] As explants,leaf segments of wild A.thaliana were inoculated in MS medium including 6-BA and NAA with different concentration,and studying the callus induction and regenerated plant of A.thaliana.[Result]6-BA was necessary for callus induction,but higher concentration resulted into vitrification easily;single use of NAA was beneficial to rooting,and bud differentiation was easy in the medium with NAA and 6-BA;the optimum medium of callus induction was MS +0.5 mg/L 6-BA +0.10 mg/L NAA,with the callus induction frequency of 100%.[Conclusion]Our study could lay a foundation for the genetic transformation and cell culture of A.thaliana.展开更多
[Objective] The aim of this study was to investigate the effects of salt stress on cell expansion in Arabidopsis thaliana rosette leaves.[Method] Arabidopsis seedlings were treated by sodium chloride at the concentrat...[Objective] The aim of this study was to investigate the effects of salt stress on cell expansion in Arabidopsis thaliana rosette leaves.[Method] Arabidopsis seedlings were treated by sodium chloride at the concentration of 0,100 or 150 mmol/L. At the 7th and 14th d of treatment,with nail enamel printing mark method and computer software,the leaf blades area and abaxial epidermal pavement cells area was measured and compared using statistical analysis in Excel. [Result] The growth of Arabidopsis rosette leaves was inhibited under salt stress. Leaves treated for 7 or 14 d expanded less compared with controls. The salt-mediated decrease in leaf expansion is associated with a decrease in abaxial pavement cell expansion. [Conclusion] The decreased leaf and epidermal cell expansion under salt stress is the most important characteristic of plant physiological response to salt stress.展开更多
By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P ...By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.展开更多
[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic ...[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.展开更多
基金supported by the Natural Science Foundation of China(32270613,31922009,and 31870259)the Yunnan Fundamental Research Projects(202201AS070051,202001AV070009,2019FI006,202001AT070118,and 202101AW070005,202401AT070220)+1 种基金the CAS“Light of West China”Program(to X.H.)the Youth Innovation Promotion Association of the of Chinese Academy of Sciences(Y201973 and 2022399).
文摘Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this study,we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1(COI1)-mediated JA signaling for this process.Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN(JAZ)repressors during salinity stress-enhanced JA signaling.Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1(ABF1),AREB1/ABF2,ABF3,and AREB2/ABF4,which belong to the basic leucine zipper(bZIP)transcription factor family and respond to salinity stress.Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition.Furthermore,ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-D3A plants.Moreover,ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE(AOS)transcription,but this activation was inhibited by JAZ1.In addition,ABF3 competitively bind to JAZ1,thereby decreasing the interaction between JAZ1 and MYC2,which is the master transcription factor controlling JA signaling.Collectively,our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.
文摘NBS-LRR (nucleotide binding sites and leucine rich repeat) protein plays a crucial role as sentries and as defense activators in plants. The structure and function of NBS-LRR proteins are closely related. Previous articles have announced that the activated ZAR1 (HopZ-Activated Resistance 1) forms a pentamer in the plasma membrane, which is a calcium permeable channel that can trigger plant immune signaling and cell death. However, the structure of galore NBS-LRRs in Arabidopsis is not yet clear. The functional sites of distinct NBS-LRR in cells may vary. In addition, identifying pathogens and activating defense regions may occur in different subcellular compartments. Therefore, dissecting the specific structure and positioning of NBS-LRRs is an indispensable step in understanding their functions. In this article, we exploit AlphaFold to predict the structure of some designed NBS-LRRs, and utilize Agroinfiltration transient expression system, combined with biochemical fractionation, to dissect the localization of these NBS-LRR receptors from Arabidopsis. Structural data indicates that the identified NBS-LRRs share analogous conformation. Membrane fractionation assay demonstrates these NBS-LRRs are mainly associated with the membrane. These data show that the Ca2+-permeable channel activity may be evolutionarily conserved in NBS-LRR of Arabidopsis, and this study provides some reference clues for analyzing the structure and localization patterns of other plant immune receptors.
文摘E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.
基金supported by the National Natural Science Foundation of China(31970289 to X.H.and 32170562 to P.L.).
文摘Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of toxic reactive oxygen species(ROS)to suppress seed germination.Controlled deterioration treatment(CDT)is a gen-eral approach for mimicking seed aging.The transcription factor ANAC089 was previously reported to modulate seed primary germination.In this study,we evaluated the ability of ANAC089 to control seed viability during aging.Compared with that in the wild-type line,the mutation of ANAC089 significantly increased H_(2)O_(2),thereby reducing seed viability after CDT,while the overexpression of ANAC089 reduced H_(2)O_(2) and improved seed long-evity,indicating a critical role for ANAC089 in maintaining seed viability through H_(2)O_(2) signaling.A series of stu-dies have shown that ANAC089 targets and negatively regulates the level of ABI5,an important transmitter of abscisic acid(ABA)signals,to affect seed viability after CDT.Furthermore,ABI5 negatively regulated the expres-sion of VTC2,which is involved in the biosynthesis of the antioxidant ascorbic acid and H_(2)O_(2) scavenging.As a result,ANAC089 attenuates the generation of H_(2)O_(2),thereby enhancing seed viability through the ABI5-VTC2 module during the seed aging process.Taken together,our results reveal a novel mechanism by which ANAC089 enhances seed viability by coordinating ABI5 and VTC2 expression,ultimately preventing the overac-cumulation of H_(2)O_(2),which would have led to reduced seed viability.
文摘[Objective] The 15urpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze the physiological characteristics of two Arabidopsis mu- tants and their wild type. [Result] There existed distinct differences in stomata apertures, water loss and leaf temperature compared with wild type except for stomata density. In addition, seed germination test on the medium indicated that cdfl was insensitive to ABA, mannitol and NaCI, but cdsl performed contrary to cdil. [ Conclusion] There are some different physiological characteristics between wild type and mutants.
基金Supported by National Science and Technology Support Plan of China(2006BAD21B04)Research Foundation for the Excellent Youth Scholars of Shandong Province(2004BS02013)Youth Foundation of Shandong Academy of Agricultural Sciences (2007YQN003)~~
文摘[Objective] The aim was to introduce a rapid DNA extraction method for PCR detection of Arabidopsis thaliana.[Method] Through the improvement of conventional DNA extraction method,a rapid Arabidopsis thaliana DNA extraction method was obtained.With randomly selected Arabidopsis thaliana transgenic strains and mutants as samples,the method was verified.[Result] After electrophoresis,UV absorption detection,it was found that DNA samples are complete and less pollution,and the result of PCR amplification objective fragment was good which proved DNA is suitable as a template for PCR reaction.After PCR detection,positive plants gene amplified bands were clear,without false-positive,and the test results were satisfactory.[Conclusion] The method is suitable for rapid extraction of Arabidopsis thaliana DNA and PCR detection.
文摘[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thaliana were cultivated by the control group and drought treatment group respectively,Physical signs of Arabidopsis thaliana and contents of glucosinolates were determined after 0,4,5,6,7 d treatment.[Result] The results showed that leaf water content of rosette leaves was obviously decreased,leaf relative conductivity (characterized by membrane permeability) and the concentration of MDA increased,the extent of damage increased with the increased time.Content of total glucosinolate,aliphatic glucosinolate and indole glucosinolate increased got their maximum after 5 days treatment,and rapidly decreased after 6 and 7 days of treatment,even much lower than the control group.Each kind of glucosinolate changed with difference from each other.4MSOB which made the most proportion of the total glucosinolate changed consistently with the total glucosinolate and difference significant.As a whole,aliphatic glucosinolates were more sensitive to drought than indole glucosinolate.The proportion of some kind glucosinolate,like 4MSOB varied had correlation with the content change.[Conclusion] Drought stress had an effects on the contents of total glucosinolate,aliphatic glucosinolate and indole glucosinolate,which made the glucosinolate participated in defense response of plant to the outside of drought stress,but long-term drought stress in leaves was not conducive to the accumulation of glucosinolates.
基金Supported by the Scientific Research Foundation for the Overseas Returned Talents of Heilongjiang Province(LC08C34)Natural Science Foundation of Northeast Agricultural University~~
文摘[Objective]Analysis of FLC sequence that Vernalization-related genes in Arabidopsis.[Method]Advance through natural populations of Arabidopsis QTL analysis of vernalization response was found on chromosome 5 of Arabidopsis thaliana have a flowering-related QTL,this test is to use sequence analysis to determine whether it is with the FLC gene homology.[Result]Arabidopsis thaliana,Italy and Sweden in the 27th,No.461,p.501,p.638,p.738,No.884 different base.While these bases are different,but the codon encoding the first nine amino acids out of the first 167 amino acids,the first 246 amino acids,due to codon degeneracy,encode proteins that are the same.[Conclusion] Arabidopsis has a rich genetic diversity,the FLC gene is highly conserved sequence length,base variable sites rich degenerate codons encoding the same amino acids they are not affect the growth of Arabidopsis thaliana.This indicates that the Arabidopsis genome sequence will be the environment.
文摘The ultrastructures of the root protophleom sieve element at different developmental stages of Arabidopsis thaliana L. were investigated using the technique of high pressure freezing and freeze substitution fixing specimen. The results show that in the development of the sieve elements, the nuclei undergo typical characteristics of the programmed cell death (PCD): the nuclear envelopes form emboli, the chromatin condenses and aggregates towards the nuclear envelope, which degrades and fully disappears later. Before the nucleus degradation, neither the nuclear envelope undulation, nucleus lobe nor marked dilation (or bleb) of perinuclear space could be observed. In the cytoplasm of the mature sieve element, there are starch-like granules separately sheathed with a layer of membrane and usually with mitochondria around. These gnanules seem to provide substrates to mitochondria in their function. Small vacuoles originate from endoplasmic reticulum (ER), and no bigger vacuole was found.
文摘Ultrastructural changes in the sieve element and dense cells of nectariferous tissue during the development of floral nectary in Arabidopsis thaliana L. were investigated with transmission electron microscopy. Samples were prepared with high pressure freezing and freeze substitution techniques. The ultrastructure of dense cell was similar to that of sieve element at its early developmental stage. With the concurrent agglutination of chromatin in the nucleus, the abnormal location of organelles and the high density of cytoplasm, the ultrastructural characteristics in die dense cells of the nectariferous tissue and in the sieve element are matched with those of the programmed cell death in animal and plant reported in recent years. The disorganization of nucleus and most organelles in the differentiation of sieve elements and dense cells is closely associated with the transportation and modification of pre-nectar and the transference of nectar. This suggests that the cytological changes in sieve element and nectariferous tissue are closely associated with the nectary functional activities.
基金Supported by Basic Scientific Research Special Found of Central College(100030-2120131106)~~
文摘[Objective] The callus induction of wild Arabidopsis thaliana leaves was studied.[Method] As explants,leaf segments of wild A.thaliana were inoculated in MS medium including 6-BA and NAA with different concentration,and studying the callus induction and regenerated plant of A.thaliana.[Result]6-BA was necessary for callus induction,but higher concentration resulted into vitrification easily;single use of NAA was beneficial to rooting,and bud differentiation was easy in the medium with NAA and 6-BA;the optimum medium of callus induction was MS +0.5 mg/L 6-BA +0.10 mg/L NAA,with the callus induction frequency of 100%.[Conclusion]Our study could lay a foundation for the genetic transformation and cell culture of A.thaliana.
文摘[Objective] The aim of this study was to investigate the effects of salt stress on cell expansion in Arabidopsis thaliana rosette leaves.[Method] Arabidopsis seedlings were treated by sodium chloride at the concentration of 0,100 or 150 mmol/L. At the 7th and 14th d of treatment,with nail enamel printing mark method and computer software,the leaf blades area and abaxial epidermal pavement cells area was measured and compared using statistical analysis in Excel. [Result] The growth of Arabidopsis rosette leaves was inhibited under salt stress. Leaves treated for 7 or 14 d expanded less compared with controls. The salt-mediated decrease in leaf expansion is associated with a decrease in abaxial pavement cell expansion. [Conclusion] The decreased leaf and epidermal cell expansion under salt stress is the most important characteristic of plant physiological response to salt stress.
文摘By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.
文摘[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.