Genetic diversity within and among six subpopulations of Larix decidua Mill. from two altitudinal transects of Swiss Alps was investigated using 6 enzyme systems coding for 8 loci. Globally, the mean proportion of pol...Genetic diversity within and among six subpopulations of Larix decidua Mill. from two altitudinal transects of Swiss Alps was investigated using 6 enzyme systems coding for 8 loci. Globally, the mean proportion of polymorphic loci was 22.9%, the average number of alleles per locus was 1.3, and the mean expected heterozygosity was 0.095. Only 5.8% of the genetic variation resided among populations. The mean genetic distance was 0.006. Several significant differences of gene frequencies were found between different age classes. Positive values of the species mean fixation index observed in this study suggested a considerable deficit of heterozygotes in the populations of L. decidua of Swiss Alps. At one of the sites (Arpette), the highest subpopulation in elevation gave the lowest level of genetic diversity (as evidenced by the lowest proportion of polymorphic loci and the lowest mean expected heterozygosity) and the largest value of genetic distance when compared to other subpopulations. The genetic differences between the highest subpopulation and the other ones suggest that the founder effect may be an important factor influencing genetic differentiation of L. decidua populations at Arpette transect.展开更多
The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed ge...The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.展开更多
Rockfalls are one of the most common instability processes in high mountains.They represent a relevant issue,both for the risks they represent for(infra)structures and frequentation,and for their potential role as ter...Rockfalls are one of the most common instability processes in high mountains.They represent a relevant issue,both for the risks they represent for(infra)structures and frequentation,and for their potential role as terrestrial indicators of climate change.This study aims to contribute to the growing topic of the relationship between climate change and slope instability at the basin scale.The selected study area is the Bessanese glacial basin(Western Italian Alps)which,since 2016,has been specifically equipped,monitored and investigated for this purpose.In order to provide a broader context for the interpretation of the recent rockfall events and associated climate conditions,a cross-temporal and integrated approach has been adopted.For this purpose,geomorphological investigations(last 100 years),local climate(last 30 years)and near-surface rock/air temperatures analyses,have been carried out.First research outcomes show that rockfalls occurred in two different geomorphological positions:on rock slopes in permafrost condition,facing from NW to NE and/or along the glacier margins,on rock slopes uncovered by the ice in the last decades.Seasonal thaw of the active layer and/or glacier debutressing can be deemed responsible for slope failure preparation.With regard to timing,almost all dated rock falls occurred in summer.For the July events,initiation may have been caused by a combination of rapid snow melt and enhanced seasonal thaw of the active layer due to anomalous high temperatures,and rainfall.August events are,instead,associated with a significant positive temperature anomaly on the quarterly scale,and they can be ascribed to the rapid and/or in depth thaw of the permafrost active layer.According to our findings,we can expect that in the Bessanese glacierized basin,as in similar high mountain areas,climate change will cause an increase of slope instability in the future.To fasten knowledge deepening,we highlight the need for a growth of a network of high elevation experimental sites at the basin scale,and the definition of shared methodological and measurement standards,that would allow a more rapid and effective comparison of data.展开更多
The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in th...The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in the Variscan blocks incorporated in the Ligurian Alps because they experienced low temperature Alpine metamorphism. During the Paleozoic, these blocks, together with the other Alpine basements, were placed between the Corsica-Sardinia and the Bohemian Massif along the northern margin of Gondwana. In this framework, they host several a variegated lithostratigraphy forming two main complexes(Complexs I and II) that can be distinguished by both the protoliths and their crosscutting relationships, which indicate that the acidic and mafic intrusives of Complex II cut an already folded sequence made of sediments, basalts and granitoids of Complex I. Both complexes were involved in the Variscan orogenic phases as highlighted by the pervasive eclogite-amphibolite facies schistosity(foliation II). However, rare relicts of a metamorphic foliation at amphibolite facies conditions(foliation I)is locally preserved only in the rocks of Complex I. It is debatable if this schistosity was produced during the early folding event e occurred between the emplacement of Complex I and II e rather than during an early stage of the Variscan metamorphic cycle.New SHRIMP and LA ICP-MS Ue Pb zircon dating integrated with literature data, provide emplacement ages of the several volcanic or intrusive bodies of both complexes. The igneous activity of Complex I is dated between 507 ± 15 Ma and 494 ± 5 Ma, while Complex II between 467 ± 12 Ma and 445.5 ± 12 Ma.The folding event recorded only by the Complex I should therefore have occurred between 494 ± 5 Ma and 467 ± 12 Ma. The Variscan eclogite-amphibolite facies metamorphism is instead constrained between ~420 Ma and ~300 Ma. These ages and the geochemical signature of these rocks allow constraining the Early Paleozoic tectono-magmatic evolution of the Ligurian blocks, from a middleeupper Cambrian rifting stage, through the formation of an Early Ordovician volcanic arc during the Rheic Ocean subduction, until a Late Ordovician extension related to the arc collapse and subsequent rifting of the PaleoThetys. Furthermore, the ~420-350 Ma ages from zircon rims testify to thermal perturbations that may be associated with the Silurian rifting-related magmatism, followed by the subduction-collisional phases of the Variscan orogeny.展开更多
Alps are an important geographical area of the European continent and,in this area,temperature increase is most evident.However,the 1991-2020 climate normal in the Alps has still not been thoroughly investigated.Aimin...Alps are an important geographical area of the European continent and,in this area,temperature increase is most evident.However,the 1991-2020 climate normal in the Alps has still not been thoroughly investigated.Aiming to fill this gap with a focus on high-elevation environments,minimum and maximum daily air temperature acquired by 23 automatic weather station were used.The results show that the mean annual values of minimum and maximum temperature for the 1991-2020 climate normal in the Alps are-2.4℃ and 4.4℃,respectively,with a warming rate of 0.5℃/10 years.The mean annual temperature comparison between 1961-1990 and 1971-2000,1961-1990 and 1981-2010,1961-1990 and 1991-2020 climate normal show an increase of 0.3℃,0.5℃ and 0.9℃,respectively.The results also confirm that seasonal and annual temperatures are rising through the whole Alpine arc,mainly in summer and autumn.This work highlights that annual minimum and maximum temperature do not seem to be affected by a positive elevation-dependent warming.Instead,a positive elevation-dependent warming in the maximum values of the annual minimum temperature was found.If anthropogenic emissions maintain the trend of the last decades,the expected mean annual temperature of the 2001-2030 climate normal is-0.2℃,with an increase of 0.5℃ if compared to the 1991-2020 climate normal and with an increase of 1.5℃ if compared to the 1961-1990 climate normal.This study highlights the warming rate that is now present in the European Alps,provides indications on the warming rate that will occur in the coming years and highlights the importance of carrying out investigations that consider not only the last 30-year climate normal,but also the most recent 30-year climate normal by comparing them with each other.展开更多
Geomorphological mapping plays a key role in landscape representation: it is the starting point for many applications and for the realization of thematic maps, such as hazard and risk maps, geoheritage and geotourism ...Geomorphological mapping plays a key role in landscape representation: it is the starting point for many applications and for the realization of thematic maps, such as hazard and risk maps, geoheritage and geotourism maps. Traditional geomorphological maps are useful for scientific purposes but they need to be simplified for different aims as management and education. In tourism valorization, mapping of geomorphological resources(i.e., geosites, and geomorphosites), and of geomorphic evidences of past hazardous geomorphological events, is important for increasing knowledge about landscape evolution and active processes, potentially involving geomorphosites and hiking trails. Active geomorphosites, as those widespread in mountain regions, testify the high dynamicity of geomorphic processes and their link with climatic conditions. In the present paper, we propose a method to produce and to update cartographic supports(Geomorphological Boxes)realized starting from a traditional geomorphological survey and mapping. The Geomorphological Boxes are geomorphological representation of single, composed or complex landforms drawn on satellite images, using the official Italian geomorphological legend(ISPRA symbols). Such cartographic representation is also addressed to the analysis(identification, evaluation and selection) of Potential Geomorphosites and Geotrails. The method has been tested in the upper portion of the Loana Valley(Western Italian Alps), located within the borders of the Sesia Val Grande Geopark, recognized by UNESCO in 2013. The area has a good potential for geotourism and for educational purposes. We identified 15 Potential Geomorphosites located along 2 Geotrails; they were ranked according to specific attributes also in relation with a Reference Geomorphosite located in the Loana hydrographic basin and inserted in official national and regional databases of geosites(ISPRA; Regione Piemonte). Finally, the ranking of Potential Geomorphosites allowed to select the most valuable ones for valorization or geoconservation purposes. In thisframework, examples of Geomorphological Boxes are proposed as supports to geo-risk education practices.展开更多
Saffron, obtained from the flower stigmas of Crocus sativus L., is one of the most expensive food spices. The introduction of saffron in alpine areas could help to broaden and diversify the activities of mountain mult...Saffron, obtained from the flower stigmas of Crocus sativus L., is one of the most expensive food spices. The introduction of saffron in alpine areas could help to broaden and diversify the activities of mountain multifunctional farms, with a positive impact on economy and land management. According to ISO 3632(2010/2011), saffron can be classified into three categories of quality(I, II, III) depending on the concentration of the three main metabolites responsible for its characteristic colour, flavor and aroma: Crocin, Picrocrocin and Safranal. This study represents the first investigation of the quality of saffron produced in the Italian Alps evaluated with spectrophotometry, HPLC, solid-phase microextraction(SPME), and gas chromatographic analysis combined with mass spectrometry(GC/MS). The experiments used Crocus sativus stigmas produced in 2012-2013 in different areas of the Central Italian Alps were located at an altitude between 720 and 1200 m a.s.l.. Results obtained were compared to commercial saffron. The analyses confirmed that all samples can be classified in the first quality category according to the ISO classification. This high quality is also confirmed by HPLC analysis. Moreover, the SPME-GC/MS analysis identified some differences in the aromatic profile of saffron samples, in particular regarding safranal concentration. A preliminary assessment of the economic viability of high quality saffron production for local markets was also performed. Our study provides valid information regarding the quality and economic sustainability of saffron production in the alpine area confirming this crop as a good candidate for a new source of income for multifunctional farms in mountain areas.展开更多
The shallow Biella and Traversella late-orogenic plutons are intruded in the Sesia Lanzo Zone(SLZ) the innermost structural element of the Western Alpine arc,a continental unit that records a pervasive metamorphic imp...The shallow Biella and Traversella late-orogenic plutons are intruded in the Sesia Lanzo Zone(SLZ) the innermost structural element of the Western Alpine arc,a continental unit that records a pervasive metamorphic imprint related to the Alpine subduction. The country rocks consist of metapelites with minor metagranitoids,meta-aplites,metabasites and marbles. The pre-intrusive pervasive metamorphic imprint developed under eclogite facies conditions. The ductile syn-metamorphic deformation展开更多
Together with the main aim of preserving nature,national parks are also expected to play an important role for the local communities,driving economic activities toward the lens of sustainable development.This contribu...Together with the main aim of preserving nature,national parks are also expected to play an important role for the local communities,driving economic activities toward the lens of sustainable development.This contribution aims to present an exploratory study on the relationship between the presence of a protected mountain area,the Gran Paradiso National Park(GPNP),in the North West of the Italian Alps,and the classification of tourism destinations,according to Weaver model of destination management.Starting from the model,the authors provide a quantitative analysis using a set of variables and indicators to comprehensively assess the differing patterns assumed by the municipalities within the borders of the GPNP and those that are not.The provisional results illustrate that the municipalities within the border of a protected area are more likely to be grouped alongside the sustainable mountain destinations.Meanwhile,research outcomes confirm that a protected area does not necessarily contrast the tourism industry but instead may boost local development by driving it within the borders of the sustainable development,switching from the area’s only preservation function to a flywheel for the local communities.展开更多
Mountain lakes represent essential stages for aquatic species on their way colonizing habitats of more elevated regions. Despite extensive biological and chemical study, only little has been reported about the species...Mountain lakes represent essential stages for aquatic species on their way colonizing habitats of more elevated regions. Despite extensive biological and chemical study, only little has been reported about the species number and density of freshwater molluscs in these waters. The article presented here elucidates the dispersal of aquatic gastropods and bivalves in 12 mountain lakes that are commonly situated in the Eastern Alps, Austria. Molluscs were recorded at 120 sample points, where a total of 13 species (8 gastropods and 5 bivalves) could be determined. Species distribution data as well as results from contemporarily conducted physico-chemical factor recording were subject to weighted average analysis. In addition, a global marginality coefficient indicating the particularity of a habitat inhabited by a focal species as well as a global tolerance coefficient expressing the width of a niche occupied by this species were computed. Species-environment relationships exhibited that species number and specific density decrease with increasing geographic altitude, declining water temperature, and decreasing amount of submerged vegetation. Whilst waters of the montane altitude level are partly charcterized by high number of mollusc species (〉 10), lakes of the subalpine altitude level commonly bear 1 or 2 species with 〈〈1 ind./mz. As proposed by the results of statistics, 9 of the 13 mollusc species are characterized by a pronounced behaviour as specialists with respect to most environmental factors. The four remaining species, Pisidium casertanum, Galba truncatula, Radix labiata, and Radix balthica, act as generalists which increases their pioneering role in the long-term occupation of the Central-alpine region.展开更多
In the warm summer of 2017,a landslide failed from the south-east side of the Col des Clochettes on the top of the underlying Trajo Glacier.The study area is at an elevation of about 3500 m a.s.l.in the Gran Paradiso ...In the warm summer of 2017,a landslide failed from the south-east side of the Col des Clochettes on the top of the underlying Trajo Glacier.The study area is at an elevation of about 3500 m a.s.l.in the Gran Paradiso Massif and can be hardly reached by walking from Cogne(Aosta Valley,NW Italy).Studies conducted by field surveys,photogrammetry(structure from motion)and satellite images analysis,integrated with the evaluation of data from meteorological stations have been used to reconstruct the phenomenon and infer its causes.The site is very complex to be studied especially due to logistic problems,therefore,measurements and observations that are common practice in other landslides are very difficult to apply here.So,many of the results achieved are not adequately supported by field studies.Anyway,the following factors could have affected the stability of the slope:i)the tectonic structure of the area,which is reflected on the morphology and on the geomechanics characteristics of the rock masses;ii)the meteorological conditions during 3 months before the main failure,resulting in an extremely high temperature compared to historical data.Moreover,the analysis of multitemporal satellite images allowed to recognize that it was not a single landslide but that the phenomenon is articulated over time in at least five failures in about 2 months.Moreover,several predisposing factors may have been playing an important role in causing the instability:the degradation of permafrost(probably affecting rock mass due to the circulation of warm air and water in the discontinuity systems),the alternance of the freeze-thaw cycles and the availability of a considerable amount of water from rainfalls and nival fusion infiltrating deeply in the rock mass.More common causes such as rains and earthquakes have been excluded.展开更多
The Canavese Intracontinental Suture Zone(CISZ) within the Inner Western Alps represents the remnant of a long-lived minor subduction zone involving a narrow, thinned continental crust/oceanic lithosphere seaway betwe...The Canavese Intracontinental Suture Zone(CISZ) within the Inner Western Alps represents the remnant of a long-lived minor subduction zone involving a narrow, thinned continental crust/oceanic lithosphere seaway between two continental domains of the Adria microplate(i.e., the Sesia Zone and the IvreaVerbano Zone). As opposed to many suture zones, the CISZ mostly escaped pervasive tectonic deformation and metamorphism, thus preserving the original stratigraphy and allowing the relationships between tectonics and sedimentation to be defined. Through detailed geological mapping(1:5000 scale),structural analysis, stratigraphic and petrographic observations, we document evidences for the late Paleozoic to late Cenozoic tectonic evolution of the CISZ, showing that it played a significant role in the context of the tectonic evolution of the Inner Western Alps region from the early to late Permian Pangea segmentation, to the Jurassic Tethyan rifting, and up to the subduction and collisional stages,forming the Western Alps. The site of localization/formation of the CISZ was not accidental but associated with the re-use of structures inherited from regional-scale wrench tectonics related to the segmentation of Pangea, and from the subsequent extensional tectonics related to the Mesozoic rifting, as documented by crosscutting relationships between stratigraphic unconformities and tectonic features. Our findings document that evidences derived from stratigraphy, facies indicators, and relationships between tectonics and sedimentation in the shallow crustal portions of suture zones, such in the CISZ, are important to better constrain the tectonic history of those metamorphic orogenic belts around the world in which evolutionary details are commonly complicated by high-strain deformation and metamorphic transformations.展开更多
A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations dif...A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations differs greatly between Western and Eastern Alps, while contrast between Southern and Northern Alps is not evident. The main purpose of this paper is to interpret variability of humidity during the last interglacial-glacial cycle in the Alpine region, based on results of various surveys performed in the Alpine region. Results show that distribution of moisture throughout the Alps was most even during the Late Würmian, while precipitation was mainly concentrated in the (North)Western Alps during the Early Würmian and in the (North)Western and along all the Southern Alps during the Middle Würmian. The Eastern Alps were rather dry during both episodes. Such moisture distribution can be explained by paths of prevailing winds. Moisture distribution is directly linked with atmospheric and oceanic circulation.展开更多
Glacier variation is one of the best indicators of climate change in mountainous environment. In French Alps, many temporal data are acquired by glaciologists at glaciers scale: geometrical parameters (surface area, t...Glacier variation is one of the best indicators of climate change in mountainous environment. In French Alps, many temporal data are acquired by glaciologists at glaciers scale: geometrical parameters (surface area, thickness, length and front altitude) are surveyed since the end of the 19th century. Those parameters are necessary to estimate the mass-balance of glaciers and, then, an accurate temporal signal of glacier variation. However, the time-response of the glaciers can be highly variable because of the topoclimate, and more generally the local settings of the glaciers. Moreover, climatologists and hydrologists are requiring estimation of glacier variations at regional scale and not only at local scale. In this paper, we highlight that the Equilibrium Line Altitude (ELA) is a parameter prone to spatio-temporal reconstructions at regional scale. ELA can indeed be interpolated at a region scale from local data: for instance, many geographers have reconstructed spatial trends during 1980s. Here, we try to interpolate ELA from multi-dimensionnal regression analysis: ELA is explained by many local parameters (Incoming solar radiation, topographic indexes, snow-redistribution by wind, etc.). Regression model was adjusted from a spatio-temporal database of 50 glaciers, located in the Massif des écrins. ELA was estimated for each glacier thanks to the Accumulation Area Ratio (ratio = 0.65) at two stages: LIA maximum and at present. Results first show that the multiple regression analysis is efficient to interpolate ELA through space: the adjusted r2 is about 0.49 for the reconstruction during the LIA, and 0.47 at present. Moreover, the RMSE error is about 50 meters for the LIA period, 55 meters at present. Finally, a high spatial variability (standard deviation of about 150 meters) is highlighted: incoming solar radiation and snow redistribution by wind mostly explain the observed differences. We can also assess a rise of the ELA of about 250 meters during the 20th century.展开更多
文摘Genetic diversity within and among six subpopulations of Larix decidua Mill. from two altitudinal transects of Swiss Alps was investigated using 6 enzyme systems coding for 8 loci. Globally, the mean proportion of polymorphic loci was 22.9%, the average number of alleles per locus was 1.3, and the mean expected heterozygosity was 0.095. Only 5.8% of the genetic variation resided among populations. The mean genetic distance was 0.006. Several significant differences of gene frequencies were found between different age classes. Positive values of the species mean fixation index observed in this study suggested a considerable deficit of heterozygotes in the populations of L. decidua of Swiss Alps. At one of the sites (Arpette), the highest subpopulation in elevation gave the lowest level of genetic diversity (as evidenced by the lowest proportion of polymorphic loci and the lowest mean expected heterozygosity) and the largest value of genetic distance when compared to other subpopulations. The genetic differences between the highest subpopulation and the other ones suggest that the founder effect may be an important factor influencing genetic differentiation of L. decidua populations at Arpette transect.
基金supported by research grants from Universita di Torino (Ricerca Locale "ex 60%" 2014—2018)the Italian Ministry of University and Research ("Finanziamento annuale individuale delle attivita base di ricerca" 2017) to A.Festa and G.Balestro, and from "Comune di Tavagnasco" to S.De Caroli and A.Succo
文摘The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.
基金the framework of the RiST Project,co-financed by“Fondazione Cassa di Risparmio di Torino”and by MeteoMet Project。
文摘Rockfalls are one of the most common instability processes in high mountains.They represent a relevant issue,both for the risks they represent for(infra)structures and frequentation,and for their potential role as terrestrial indicators of climate change.This study aims to contribute to the growing topic of the relationship between climate change and slope instability at the basin scale.The selected study area is the Bessanese glacial basin(Western Italian Alps)which,since 2016,has been specifically equipped,monitored and investigated for this purpose.In order to provide a broader context for the interpretation of the recent rockfall events and associated climate conditions,a cross-temporal and integrated approach has been adopted.For this purpose,geomorphological investigations(last 100 years),local climate(last 30 years)and near-surface rock/air temperatures analyses,have been carried out.First research outcomes show that rockfalls occurred in two different geomorphological positions:on rock slopes in permafrost condition,facing from NW to NE and/or along the glacier margins,on rock slopes uncovered by the ice in the last decades.Seasonal thaw of the active layer and/or glacier debutressing can be deemed responsible for slope failure preparation.With regard to timing,almost all dated rock falls occurred in summer.For the July events,initiation may have been caused by a combination of rapid snow melt and enhanced seasonal thaw of the active layer due to anomalous high temperatures,and rainfall.August events are,instead,associated with a significant positive temperature anomaly on the quarterly scale,and they can be ascribed to the rapid and/or in depth thaw of the permafrost active layer.According to our findings,we can expect that in the Bessanese glacierized basin,as in similar high mountain areas,climate change will cause an increase of slope instability in the future.To fasten knowledge deepening,we highlight the need for a growth of a network of high elevation experimental sites at the basin scale,and the definition of shared methodological and measurement standards,that would allow a more rapid and effective comparison of data.
基金supported by Italian 1:50,000 Geological Mapping (CARGdR egione Liguria Project, University of Pavia grants)
文摘The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in the Variscan blocks incorporated in the Ligurian Alps because they experienced low temperature Alpine metamorphism. During the Paleozoic, these blocks, together with the other Alpine basements, were placed between the Corsica-Sardinia and the Bohemian Massif along the northern margin of Gondwana. In this framework, they host several a variegated lithostratigraphy forming two main complexes(Complexs I and II) that can be distinguished by both the protoliths and their crosscutting relationships, which indicate that the acidic and mafic intrusives of Complex II cut an already folded sequence made of sediments, basalts and granitoids of Complex I. Both complexes were involved in the Variscan orogenic phases as highlighted by the pervasive eclogite-amphibolite facies schistosity(foliation II). However, rare relicts of a metamorphic foliation at amphibolite facies conditions(foliation I)is locally preserved only in the rocks of Complex I. It is debatable if this schistosity was produced during the early folding event e occurred between the emplacement of Complex I and II e rather than during an early stage of the Variscan metamorphic cycle.New SHRIMP and LA ICP-MS Ue Pb zircon dating integrated with literature data, provide emplacement ages of the several volcanic or intrusive bodies of both complexes. The igneous activity of Complex I is dated between 507 ± 15 Ma and 494 ± 5 Ma, while Complex II between 467 ± 12 Ma and 445.5 ± 12 Ma.The folding event recorded only by the Complex I should therefore have occurred between 494 ± 5 Ma and 467 ± 12 Ma. The Variscan eclogite-amphibolite facies metamorphism is instead constrained between ~420 Ma and ~300 Ma. These ages and the geochemical signature of these rocks allow constraining the Early Paleozoic tectono-magmatic evolution of the Ligurian blocks, from a middleeupper Cambrian rifting stage, through the formation of an Early Ordovician volcanic arc during the Rheic Ocean subduction, until a Late Ordovician extension related to the arc collapse and subsequent rifting of the PaleoThetys. Furthermore, the ~420-350 Ma ages from zircon rims testify to thermal perturbations that may be associated with the Silurian rifting-related magmatism, followed by the subduction-collisional phases of the Variscan orogeny.
基金the framework of the Gio Mon Project,co-financed by“Fondazione Cassa di Risparmio di Torino”。
文摘Alps are an important geographical area of the European continent and,in this area,temperature increase is most evident.However,the 1991-2020 climate normal in the Alps has still not been thoroughly investigated.Aiming to fill this gap with a focus on high-elevation environments,minimum and maximum daily air temperature acquired by 23 automatic weather station were used.The results show that the mean annual values of minimum and maximum temperature for the 1991-2020 climate normal in the Alps are-2.4℃ and 4.4℃,respectively,with a warming rate of 0.5℃/10 years.The mean annual temperature comparison between 1961-1990 and 1971-2000,1961-1990 and 1981-2010,1961-1990 and 1991-2020 climate normal show an increase of 0.3℃,0.5℃ and 0.9℃,respectively.The results also confirm that seasonal and annual temperatures are rising through the whole Alpine arc,mainly in summer and autumn.This work highlights that annual minimum and maximum temperature do not seem to be affected by a positive elevation-dependent warming.Instead,a positive elevation-dependent warming in the maximum values of the annual minimum temperature was found.If anthropogenic emissions maintain the trend of the last decades,the expected mean annual temperature of the 2001-2030 climate normal is-0.2℃,with an increase of 0.5℃ if compared to the 1991-2020 climate normal and with an increase of 1.5℃ if compared to the 1961-1990 climate normal.This study highlights the warming rate that is now present in the European Alps,provides indications on the warming rate that will occur in the coming years and highlights the importance of carrying out investigations that consider not only the last 30-year climate normal,but also the most recent 30-year climate normal by comparing them with each other.
基金funded by the Fondi Potenziamento della Ricerca - Linea 2 - 2015 Project "Dynamic of active margins: from rift to collisional chains", leader Dr. Davide Zanoni
文摘Geomorphological mapping plays a key role in landscape representation: it is the starting point for many applications and for the realization of thematic maps, such as hazard and risk maps, geoheritage and geotourism maps. Traditional geomorphological maps are useful for scientific purposes but they need to be simplified for different aims as management and education. In tourism valorization, mapping of geomorphological resources(i.e., geosites, and geomorphosites), and of geomorphic evidences of past hazardous geomorphological events, is important for increasing knowledge about landscape evolution and active processes, potentially involving geomorphosites and hiking trails. Active geomorphosites, as those widespread in mountain regions, testify the high dynamicity of geomorphic processes and their link with climatic conditions. In the present paper, we propose a method to produce and to update cartographic supports(Geomorphological Boxes)realized starting from a traditional geomorphological survey and mapping. The Geomorphological Boxes are geomorphological representation of single, composed or complex landforms drawn on satellite images, using the official Italian geomorphological legend(ISPRA symbols). Such cartographic representation is also addressed to the analysis(identification, evaluation and selection) of Potential Geomorphosites and Geotrails. The method has been tested in the upper portion of the Loana Valley(Western Italian Alps), located within the borders of the Sesia Val Grande Geopark, recognized by UNESCO in 2013. The area has a good potential for geotourism and for educational purposes. We identified 15 Potential Geomorphosites located along 2 Geotrails; they were ranked according to specific attributes also in relation with a Reference Geomorphosite located in the Loana hydrographic basin and inserted in official national and regional databases of geosites(ISPRA; Regione Piemonte). Finally, the ranking of Potential Geomorphosites allowed to select the most valuable ones for valorization or geoconservation purposes. In thisframework, examples of Geomorphological Boxes are proposed as supports to geo-risk education practices.
基金partly supported by "Accordo di Programma, affermazione in Edolo del Centro di Eccellenza Università della Montagna" MIURUniversità degli Studi di Milano, prot. no. 386 1293-05/08/2011 and by Fondazione della Comunità Bresciana- Onlus
文摘Saffron, obtained from the flower stigmas of Crocus sativus L., is one of the most expensive food spices. The introduction of saffron in alpine areas could help to broaden and diversify the activities of mountain multifunctional farms, with a positive impact on economy and land management. According to ISO 3632(2010/2011), saffron can be classified into three categories of quality(I, II, III) depending on the concentration of the three main metabolites responsible for its characteristic colour, flavor and aroma: Crocin, Picrocrocin and Safranal. This study represents the first investigation of the quality of saffron produced in the Italian Alps evaluated with spectrophotometry, HPLC, solid-phase microextraction(SPME), and gas chromatographic analysis combined with mass spectrometry(GC/MS). The experiments used Crocus sativus stigmas produced in 2012-2013 in different areas of the Central Italian Alps were located at an altitude between 720 and 1200 m a.s.l.. Results obtained were compared to commercial saffron. The analyses confirmed that all samples can be classified in the first quality category according to the ISO classification. This high quality is also confirmed by HPLC analysis. Moreover, the SPME-GC/MS analysis identified some differences in the aromatic profile of saffron samples, in particular regarding safranal concentration. A preliminary assessment of the economic viability of high quality saffron production for local markets was also performed. Our study provides valid information regarding the quality and economic sustainability of saffron production in the alpine area confirming this crop as a good candidate for a new source of income for multifunctional farms in mountain areas.
文摘The shallow Biella and Traversella late-orogenic plutons are intruded in the Sesia Lanzo Zone(SLZ) the innermost structural element of the Western Alpine arc,a continental unit that records a pervasive metamorphic imprint related to the Alpine subduction. The country rocks consist of metapelites with minor metagranitoids,meta-aplites,metabasites and marbles. The pre-intrusive pervasive metamorphic imprint developed under eclogite facies conditions. The ductile syn-metamorphic deformation
基金the participation to the Research Project,EMERITUS-Eco-ManagemEnt of agRI-Tourism in moUntain areaS-funded by Compagnia di San Paolo di Torino
文摘Together with the main aim of preserving nature,national parks are also expected to play an important role for the local communities,driving economic activities toward the lens of sustainable development.This contribution aims to present an exploratory study on the relationship between the presence of a protected mountain area,the Gran Paradiso National Park(GPNP),in the North West of the Italian Alps,and the classification of tourism destinations,according to Weaver model of destination management.Starting from the model,the authors provide a quantitative analysis using a set of variables and indicators to comprehensively assess the differing patterns assumed by the municipalities within the borders of the GPNP and those that are not.The provisional results illustrate that the municipalities within the border of a protected area are more likely to be grouped alongside the sustainable mountain destinations.Meanwhile,research outcomes confirm that a protected area does not necessarily contrast the tourism industry but instead may boost local development by driving it within the borders of the sustainable development,switching from the area’s only preservation function to a flywheel for the local communities.
文摘Mountain lakes represent essential stages for aquatic species on their way colonizing habitats of more elevated regions. Despite extensive biological and chemical study, only little has been reported about the species number and density of freshwater molluscs in these waters. The article presented here elucidates the dispersal of aquatic gastropods and bivalves in 12 mountain lakes that are commonly situated in the Eastern Alps, Austria. Molluscs were recorded at 120 sample points, where a total of 13 species (8 gastropods and 5 bivalves) could be determined. Species distribution data as well as results from contemporarily conducted physico-chemical factor recording were subject to weighted average analysis. In addition, a global marginality coefficient indicating the particularity of a habitat inhabited by a focal species as well as a global tolerance coefficient expressing the width of a niche occupied by this species were computed. Species-environment relationships exhibited that species number and specific density decrease with increasing geographic altitude, declining water temperature, and decreasing amount of submerged vegetation. Whilst waters of the montane altitude level are partly charcterized by high number of mollusc species (〉 10), lakes of the subalpine altitude level commonly bear 1 or 2 species with 〈〈1 ind./mz. As proposed by the results of statistics, 9 of the 13 mollusc species are characterized by a pronounced behaviour as specialists with respect to most environmental factors. The four remaining species, Pisidium casertanum, Galba truncatula, Radix labiata, and Radix balthica, act as generalists which increases their pioneering role in the long-term occupation of the Central-alpine region.
文摘In the warm summer of 2017,a landslide failed from the south-east side of the Col des Clochettes on the top of the underlying Trajo Glacier.The study area is at an elevation of about 3500 m a.s.l.in the Gran Paradiso Massif and can be hardly reached by walking from Cogne(Aosta Valley,NW Italy).Studies conducted by field surveys,photogrammetry(structure from motion)and satellite images analysis,integrated with the evaluation of data from meteorological stations have been used to reconstruct the phenomenon and infer its causes.The site is very complex to be studied especially due to logistic problems,therefore,measurements and observations that are common practice in other landslides are very difficult to apply here.So,many of the results achieved are not adequately supported by field studies.Anyway,the following factors could have affected the stability of the slope:i)the tectonic structure of the area,which is reflected on the morphology and on the geomechanics characteristics of the rock masses;ii)the meteorological conditions during 3 months before the main failure,resulting in an extremely high temperature compared to historical data.Moreover,the analysis of multitemporal satellite images allowed to recognize that it was not a single landslide but that the phenomenon is articulated over time in at least five failures in about 2 months.Moreover,several predisposing factors may have been playing an important role in causing the instability:the degradation of permafrost(probably affecting rock mass due to the circulation of warm air and water in the discontinuity systems),the alternance of the freeze-thaw cycles and the availability of a considerable amount of water from rainfalls and nival fusion infiltrating deeply in the rock mass.More common causes such as rains and earthquakes have been excluded.
基金supported by the University of Torino (“Ricerca Locale ex 60 % 2017–2021”, grants to A. Festa)the Italian Ministry of University and Research (“Finanziamento annuale individuale delle attività base di ricerca 2017”, grants to A. Festa and G. Balestro, and Cofin-PRIN 2020 “POEM project – POlig Enetic Mélanges: anatomy, significance and societal impact”, grants no. 2020542ET7_003 to A. Festa)。
文摘The Canavese Intracontinental Suture Zone(CISZ) within the Inner Western Alps represents the remnant of a long-lived minor subduction zone involving a narrow, thinned continental crust/oceanic lithosphere seaway between two continental domains of the Adria microplate(i.e., the Sesia Zone and the IvreaVerbano Zone). As opposed to many suture zones, the CISZ mostly escaped pervasive tectonic deformation and metamorphism, thus preserving the original stratigraphy and allowing the relationships between tectonics and sedimentation to be defined. Through detailed geological mapping(1:5000 scale),structural analysis, stratigraphic and petrographic observations, we document evidences for the late Paleozoic to late Cenozoic tectonic evolution of the CISZ, showing that it played a significant role in the context of the tectonic evolution of the Inner Western Alps region from the early to late Permian Pangea segmentation, to the Jurassic Tethyan rifting, and up to the subduction and collisional stages,forming the Western Alps. The site of localization/formation of the CISZ was not accidental but associated with the re-use of structures inherited from regional-scale wrench tectonics related to the segmentation of Pangea, and from the subsequent extensional tectonics related to the Mesozoic rifting, as documented by crosscutting relationships between stratigraphic unconformities and tectonic features. Our findings document that evidences derived from stratigraphy, facies indicators, and relationships between tectonics and sedimentation in the shallow crustal portions of suture zones, such in the CISZ, are important to better constrain the tectonic history of those metamorphic orogenic belts around the world in which evolutionary details are commonly complicated by high-strain deformation and metamorphic transformations.
文摘A lot of paleoenvironmental surveys have been carried out in the Alpine region to elucidate glacier extension during the Last Glacial or the Würmian (115 - 12 ka BP). However, the evidence of past glaciations differs greatly between Western and Eastern Alps, while contrast between Southern and Northern Alps is not evident. The main purpose of this paper is to interpret variability of humidity during the last interglacial-glacial cycle in the Alpine region, based on results of various surveys performed in the Alpine region. Results show that distribution of moisture throughout the Alps was most even during the Late Würmian, while precipitation was mainly concentrated in the (North)Western Alps during the Early Würmian and in the (North)Western and along all the Southern Alps during the Middle Würmian. The Eastern Alps were rather dry during both episodes. Such moisture distribution can be explained by paths of prevailing winds. Moisture distribution is directly linked with atmospheric and oceanic circulation.
文摘Glacier variation is one of the best indicators of climate change in mountainous environment. In French Alps, many temporal data are acquired by glaciologists at glaciers scale: geometrical parameters (surface area, thickness, length and front altitude) are surveyed since the end of the 19th century. Those parameters are necessary to estimate the mass-balance of glaciers and, then, an accurate temporal signal of glacier variation. However, the time-response of the glaciers can be highly variable because of the topoclimate, and more generally the local settings of the glaciers. Moreover, climatologists and hydrologists are requiring estimation of glacier variations at regional scale and not only at local scale. In this paper, we highlight that the Equilibrium Line Altitude (ELA) is a parameter prone to spatio-temporal reconstructions at regional scale. ELA can indeed be interpolated at a region scale from local data: for instance, many geographers have reconstructed spatial trends during 1980s. Here, we try to interpolate ELA from multi-dimensionnal regression analysis: ELA is explained by many local parameters (Incoming solar radiation, topographic indexes, snow-redistribution by wind, etc.). Regression model was adjusted from a spatio-temporal database of 50 glaciers, located in the Massif des écrins. ELA was estimated for each glacier thanks to the Accumulation Area Ratio (ratio = 0.65) at two stages: LIA maximum and at present. Results first show that the multiple regression analysis is efficient to interpolate ELA through space: the adjusted r2 is about 0.49 for the reconstruction during the LIA, and 0.47 at present. Moreover, the RMSE error is about 50 meters for the LIA period, 55 meters at present. Finally, a high spatial variability (standard deviation of about 150 meters) is highlighted: incoming solar radiation and snow redistribution by wind mostly explain the observed differences. We can also assess a rise of the ELA of about 250 meters during the 20th century.