Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
First,the analytical hierarchy process(AHP),which stands for the subjective weighting method,and the entropy method,which stands for the objective weighting method,are chosen to calculate the index weights of the cont...First,the analytical hierarchy process(AHP),which stands for the subjective weighting method,and the entropy method,which stands for the objective weighting method,are chosen to calculate the index weights of the contract risks of third party logistics(TPL),respectively.Then,they can determine the combination weights using the combination weighting method.Second,using the combination weights,the contract risks of TPL are evaluated through the fuzzy comprehensive evaluation method.According to the combination weights,the most important risk factor of the contract risks of TPL is choosing sub-contractors.The results are basically consistent with the facts and show that the weights determined by the combination weighting method can avoid the man-made deviations of the subjective weighting method on the one hand,and prevent results opposite to the reality brought about by the objective weighting method on the other hand.Meanwhile,the results of the fuzzy comprehensive evaluation are that the contract risks of TPL are at a high risk level.Roughly this matches real situations,and it indicates that the combination weighting method can generate the comprehensive assessment more scientifically and more reasonably as well.展开更多
The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighti...The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighting and an improved technique for order of preference by similarity to ideal solution(TOPSIS)method to perform an objective and scientific evaluation of the transformer oil-paper insulation state.Firstly,multiple aging features are extracted from the recovery voltage polarization spectrum and the extended Debye equivalent circuit owing to the limitations of using a single feature for evaluation.A standard evaluation index system is then established by using the collected time-domain dielectric spectrum data.Secondly,this study implements the per-unit value concept to integrate the dimension of the index matrix and calculates the objective weight by using the random forest algorithm.Furthermore,it combines the weighting model to overcome the drawbacks of the single weighting method by using the indicators and considering the subjective experience of experts and the random forest algorithm.Lastly,the enhanced TOPSIS approach is used to determine the insulation quality of an oil-paper transformer.A verification example demonstrates that the evaluation model developed in this study can efficiently and accurately diagnose the insulation status of transformers.Essentially,this study presents a novel approach for the assessment of transformer oil-paper insulation.展开更多
Existing“evaluation indicators”are selected and combined to build a model to support the optimization of shale gas horizontal wells.Towards this end,different“weighting methods”,including AHP and the so-called ent...Existing“evaluation indicators”are selected and combined to build a model to support the optimization of shale gas horizontal wells.Towards this end,different“weighting methods”,including AHP and the so-called entropy method,are combined in the frame of the game theory.Using a relevant test case for the implementation of the model,it is shown that the horizontal section of the considered well is in the middle sweet spot area with good physical properties and fracturing ability.In comparison with the FSI(flow scanner Image)gas production profile,the new model seems to display better abilities for the optimization of horizontal wells.展开更多
Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological enviro...Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.展开更多
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept...In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.展开更多
[Objective] The aim was to study the construction and application of combined evaluation model of regional water quality plan. [Meth- od] By dint of layer analysis, subjective and objective model of entropy evaluation...[Objective] The aim was to study the construction and application of combined evaluation model of regional water quality plan. [Meth- od] By dint of layer analysis, subjective and objective model of entropy evaluation, the water quality plan in Jinghe was evaluated. Combined evalu- ation model based on information entropy were constructed, and considering the single model evaluation result, the optimal water quality plan was selected. [ Result] The combination weight result suggested that COD amount was the most essential indicator in water quality plan and embodied the importance of water environment protection, which met basic objective of environment protection and social, economic effects. Combined evalu- ation indicated that in the sixteen plans, plan 16 was of highest comprehensive evaluation value, and can be considered as optimum water quality plan. [ Conclusion] Combined evaluation model can effectively list the advantages of each evaluation model and improve the dependability of water quality plan, and provided a new research idea for the optimal evaluation of water pollution control plan.展开更多
适应城市化进程加速与气候变化,提高抵御洪涝灾害的能力是可持续发展的必由之路。从韧性视角出发,构建基于“自然-经济-社会-基础设施”的洪涝韧性评估框架,运用组合赋权-逼近理想解排序模型(Technique for Order Preference by Similar...适应城市化进程加速与气候变化,提高抵御洪涝灾害的能力是可持续发展的必由之路。从韧性视角出发,构建基于“自然-经济-社会-基础设施”的洪涝韧性评估框架,运用组合赋权-逼近理想解排序模型(Technique for Order Preference by Similarity to the Ideal Solution,TOPSIS)评估2007—2022年南京都市圈城市洪涝韧性水平,并利用障碍度模型诊断抑制洪涝韧性提升的主要因素。结果表明:(1)都市圈城市洪涝韧性呈上升趋势,从较低水平转变为中等水平;(2)洪涝韧性空间分布呈现以南京为核心、向四周辐射递减的“中心-外围”特征;(3)研究时段末南京都市圈洪涝韧性的关键限制因素有河流调蓄能力、人口脆弱度、政府财政情况,植被覆盖率为部分城市潜在障碍因素。研究可为南京都市圈完善洪涝灾害防治体系、提升洪涝韧性提供参考。展开更多
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘First,the analytical hierarchy process(AHP),which stands for the subjective weighting method,and the entropy method,which stands for the objective weighting method,are chosen to calculate the index weights of the contract risks of third party logistics(TPL),respectively.Then,they can determine the combination weights using the combination weighting method.Second,using the combination weights,the contract risks of TPL are evaluated through the fuzzy comprehensive evaluation method.According to the combination weights,the most important risk factor of the contract risks of TPL is choosing sub-contractors.The results are basically consistent with the facts and show that the weights determined by the combination weighting method can avoid the man-made deviations of the subjective weighting method on the one hand,and prevent results opposite to the reality brought about by the objective weighting method on the other hand.Meanwhile,the results of the fuzzy comprehensive evaluation are that the contract risks of TPL are at a high risk level.Roughly this matches real situations,and it indicates that the combination weighting method can generate the comprehensive assessment more scientifically and more reasonably as well.
基金supported by the Natural Science Foundation of the Fujian Province(2021J01109).
文摘The accurate identification of the oil-paper insulation state of a transformer is crucial for most maintenance strategies.This paper presents a multi-feature comprehensive evaluation model based on combination weighting and an improved technique for order of preference by similarity to ideal solution(TOPSIS)method to perform an objective and scientific evaluation of the transformer oil-paper insulation state.Firstly,multiple aging features are extracted from the recovery voltage polarization spectrum and the extended Debye equivalent circuit owing to the limitations of using a single feature for evaluation.A standard evaluation index system is then established by using the collected time-domain dielectric spectrum data.Secondly,this study implements the per-unit value concept to integrate the dimension of the index matrix and calculates the objective weight by using the random forest algorithm.Furthermore,it combines the weighting model to overcome the drawbacks of the single weighting method by using the indicators and considering the subjective experience of experts and the random forest algorithm.Lastly,the enhanced TOPSIS approach is used to determine the insulation quality of an oil-paper transformer.A verification example demonstrates that the evaluation model developed in this study can efficiently and accurately diagnose the insulation status of transformers.Essentially,this study presents a novel approach for the assessment of transformer oil-paper insulation.
基金supported by the National Science and Technology Major Project during the 13th Five-Year Plan under grant(2016ZX05060-019)the National Science and Technology Major Project during the 13th Five-Year Plan under grant(2016ZX05060004).
文摘Existing“evaluation indicators”are selected and combined to build a model to support the optimization of shale gas horizontal wells.Towards this end,different“weighting methods”,including AHP and the so-called entropy method,are combined in the frame of the game theory.Using a relevant test case for the implementation of the model,it is shown that the horizontal section of the considered well is in the middle sweet spot area with good physical properties and fracturing ability.In comparison with the FSI(flow scanner Image)gas production profile,the new model seems to display better abilities for the optimization of horizontal wells.
基金National Natural Science Foundations of China(Nos.41172236,41402243)
文摘Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.
基金Project(08SK1002) supported by the Major Project of Science and Technology Department of Hunan Province,China
文摘In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.
基金Supported by Science and Technology Initiation Fund of Anhui Polytechnic University (2009YQQ012)
文摘[Objective] The aim was to study the construction and application of combined evaluation model of regional water quality plan. [Meth- od] By dint of layer analysis, subjective and objective model of entropy evaluation, the water quality plan in Jinghe was evaluated. Combined evalu- ation model based on information entropy were constructed, and considering the single model evaluation result, the optimal water quality plan was selected. [ Result] The combination weight result suggested that COD amount was the most essential indicator in water quality plan and embodied the importance of water environment protection, which met basic objective of environment protection and social, economic effects. Combined evalu- ation indicated that in the sixteen plans, plan 16 was of highest comprehensive evaluation value, and can be considered as optimum water quality plan. [ Conclusion] Combined evaluation model can effectively list the advantages of each evaluation model and improve the dependability of water quality plan, and provided a new research idea for the optimal evaluation of water pollution control plan.
文摘适应城市化进程加速与气候变化,提高抵御洪涝灾害的能力是可持续发展的必由之路。从韧性视角出发,构建基于“自然-经济-社会-基础设施”的洪涝韧性评估框架,运用组合赋权-逼近理想解排序模型(Technique for Order Preference by Similarity to the Ideal Solution,TOPSIS)评估2007—2022年南京都市圈城市洪涝韧性水平,并利用障碍度模型诊断抑制洪涝韧性提升的主要因素。结果表明:(1)都市圈城市洪涝韧性呈上升趋势,从较低水平转变为中等水平;(2)洪涝韧性空间分布呈现以南京为核心、向四周辐射递减的“中心-外围”特征;(3)研究时段末南京都市圈洪涝韧性的关键限制因素有河流调蓄能力、人口脆弱度、政府财政情况,植被覆盖率为部分城市潜在障碍因素。研究可为南京都市圈完善洪涝灾害防治体系、提升洪涝韧性提供参考。