Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease(PD),supporting the“body-first”hypothesis.However,there remains a notable absence of PD-specific...Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease(PD),supporting the“body-first”hypothesis.However,there remains a notable absence of PD-specific animal models induced by inflammatory cytokines.This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1,identified in our previous research.The involvement of CXCL1 in PD pathogenesis was validated using subacute and chronic MPTP-induced mouse models.Based on these findings,2-month-old C57BL/6J mice were intravenously administered CXCL1(20 ng/kg/day)for 2 weeks(5 days per week),successfully replicating motor deficits and pathological alterations in the substantia nigra observed in the chronic MPTP model.These results demonstrate the potential of CXCL1-induced inflammation as a mechanism for PD modeling.The model revealed activation of the PPAR signaling pathway in CXCL1-mediated neuronal damage by CXCL1.Linoleic acid,a PPAR-γactivator,significantly mitigated MPTPand CXCL1-induced toxicity and reduced serum CXCL1levels.In addition,the CXCL1-injected mouse model shortened the timeline for developing chronic PD mouse model to 2 weeks,offering an efficient platform for studying inflammation-driven processes in PD.The findings provide critical insights into the inflammatory mechanisms underlying PD and identify promising therapeutic targets for intervention.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrog...Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.展开更多
The commercially available inbred obesity-prone C57BL/6J (B6) and outbred stock ICR mice (3-week old) purchased from a breeder of Beijing were weaned onto high-fat diet (HFD), HFD-3% fructose water (HFDF) and ...The commercially available inbred obesity-prone C57BL/6J (B6) and outbred stock ICR mice (3-week old) purchased from a breeder of Beijing were weaned onto high-fat diet (HFD), HFD-3% fructose water (HFDF) and standard rodent chow, respectively. After exposure to the diets for six weeks, HFD and HFDF fed mice were injected intraperitoneally with streptozotocin (STZ, 100mg/kg body weight) and kept on the same diet for next four weeks. Body weight was recorded weekly. Non-fasting blood glucose levels of HFD and HFDF fed mice were measured before and after STZ injections. The body weight of HFD-fed and HFDF-fed B6 mice were significantly lower than that of the control, but body weight of HFD-fed and HFDF-fed ICR mice were significantly higher than that of the control. After injection of STZ, blood glucose levels were above the stardardized criterion (11 mmol/L) for the diabetes mouse model in both HFD and HFDF fed ICR mice, but reverse in B6 mice. The type 2 diabetes model was generated successfully in ICR but not in B6 mice, regardless of whether fructose was supplied. The current results indicated that ICR mouse is still a useful and economical strain for HFD-induced/STZ-treated type 2 diabetes model, and that some variation may occur in the genetic composition among B6 mice bred by different breeders.展开更多
The killing and injury effects of gas explosion shock wave on mouse in an open space pipeline is tested experimentally. When the methane volume fraction is 10M, the maximum explosion pressure is 0. 264 MPa and the inj...The killing and injury effects of gas explosion shock wave on mouse in an open space pipeline is tested experimentally. When the methane volume fraction is 10M, the maximum explosion pressure is 0. 264 MPa and the injury is the most serious. Specially, some designed obstacles put in the open space pipeline are conducive to producing more stronger gas explosion shock wave. Accordingly, the injury effect of methane explosion on mouse is enhanced under obstacles condition. When the methane volume fraction is 10%, the maximum explosion pressure can reach 0. 298 MPa under obstacles conditiorL It can be concluded that to reduce explosive accident impact, the obstacles in coal mine should be avoided. With the explosions increasing, the death pressure of mouse decreases.展开更多
AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liverhumanized mice.METHODS We crossed three mouse strains,including albumin(Alb)-cre transgenic mice,inducible diphthe...AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liverhumanized mice.METHODS We crossed three mouse strains,including albumin(Alb)-cre transgenic mice,inducible diphtheria toxin receptor(DTR) transgenic mice and severe combined immune deficient(SCID)-beige mice,to create Alb-cre/DTR/SCID-beige(ADSB) mice,which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb(encoding ALB),the DTR stop signal flanked by two lox P sites can be deleted in the ADSB mice,resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally(i.p.) with diphtheria toxin(DT) and liver damage was assessed by serum alanine aminotransferase(ALT) level. Two days later,mouse livers were sampled for histological analysis,and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7,14,21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation.RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2,increased on day 7,and was lowest on day 4(range,10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/m L on day 4,then returned to background values on day 7. After transplantation of human liver cells,peripheral blood human ALB level was 1580 ± 454.8 ng/m L(range,750.2-3064.9 ng/m L) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice.CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications,such as hepatocyte transplantation,hepatic regeneration and drug metabolism.展开更多
In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully imp...In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine(100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous mat rine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama(approval No. A2013 INM-1 and A2016 INM-3) on May 7, 2013 and May 17, 2016, respectively.展开更多
Epidermal-type transglutaminase 3 (TGM3) is involved in the cross-linking of structural proteins to form the cornifiedenvelope in the epidermis. In the present study, we detected the expression of TGM3 in the mouse em...Epidermal-type transglutaminase 3 (TGM3) is involved in the cross-linking of structural proteins to form the cornifiedenvelope in the epidermis. In the present study, we detected the expression of TGM3 in the mouse embryo using RT-PCR.TGM3 mRNA is weakly presented from E11.5 to E14.5 and increases significantly from E15.5 to birth. Then wedetermined the spatial and temporal expression pattern of TGM3 in the skin and other organs by in situ hybridization. Wefound a deprivation of TGM3 in skin at E11.5, while a rich supply in periderm cells and a weak expression in basal cellsfrom E12.5 to E14.5. From the period of E15.5 to E16.5, after keratinization in the epidermis, TGM3 was expressed inthe granular and cornified layers. The electron microscopic observation of the C57BL/6J mouse limb bud skin develop-ment provided several morphological evidences for the epidermal differentiation. The above findings suggest that theexpression of TGM3 plays a important role in the epidermis differentiation in embryogenesis.展开更多
AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 m...AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.展开更多
Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to si...Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th-6th lumbar spinal cord in a mouse model of spared nerve injury(SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry(MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain,and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.展开更多
基金supported by the National Natural Science Foundation of China (32471049,32170984,32471188,32200802)Natural Science Foundation of Shandong Province (ZR2023QH110)。
文摘Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease(PD),supporting the“body-first”hypothesis.However,there remains a notable absence of PD-specific animal models induced by inflammatory cytokines.This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1,identified in our previous research.The involvement of CXCL1 in PD pathogenesis was validated using subacute and chronic MPTP-induced mouse models.Based on these findings,2-month-old C57BL/6J mice were intravenously administered CXCL1(20 ng/kg/day)for 2 weeks(5 days per week),successfully replicating motor deficits and pathological alterations in the substantia nigra observed in the chronic MPTP model.These results demonstrate the potential of CXCL1-induced inflammation as a mechanism for PD modeling.The model revealed activation of the PPAR signaling pathway in CXCL1-mediated neuronal damage by CXCL1.Linoleic acid,a PPAR-γactivator,significantly mitigated MPTPand CXCL1-induced toxicity and reduced serum CXCL1levels.In addition,the CXCL1-injected mouse model shortened the timeline for developing chronic PD mouse model to 2 weeks,offering an efficient platform for studying inflammation-driven processes in PD.The findings provide critical insights into the inflammatory mechanisms underlying PD and identify promising therapeutic targets for intervention.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
基金supported by the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT&Future Planning (2022R1A2C2006229,2022R1A6A3A01086868)Korea Dementia Research Project through the Korea Dementia Research Center (KDRC)funded by the Ministry of Health&Welfare and Ministry of Science and ICT,Republic of Korea (RS-2024-00345328)KIST Institutional Grant (2E32851)。
文摘Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.
文摘The commercially available inbred obesity-prone C57BL/6J (B6) and outbred stock ICR mice (3-week old) purchased from a breeder of Beijing were weaned onto high-fat diet (HFD), HFD-3% fructose water (HFDF) and standard rodent chow, respectively. After exposure to the diets for six weeks, HFD and HFDF fed mice were injected intraperitoneally with streptozotocin (STZ, 100mg/kg body weight) and kept on the same diet for next four weeks. Body weight was recorded weekly. Non-fasting blood glucose levels of HFD and HFDF fed mice were measured before and after STZ injections. The body weight of HFD-fed and HFDF-fed B6 mice were significantly lower than that of the control, but body weight of HFD-fed and HFDF-fed ICR mice were significantly higher than that of the control. After injection of STZ, blood glucose levels were above the stardardized criterion (11 mmol/L) for the diabetes mouse model in both HFD and HFDF fed ICR mice, but reverse in B6 mice. The type 2 diabetes model was generated successfully in ICR but not in B6 mice, regardless of whether fructose was supplied. The current results indicated that ICR mouse is still a useful and economical strain for HFD-induced/STZ-treated type 2 diabetes model, and that some variation may occur in the genetic composition among B6 mice bred by different breeders.
文摘The killing and injury effects of gas explosion shock wave on mouse in an open space pipeline is tested experimentally. When the methane volume fraction is 10M, the maximum explosion pressure is 0. 264 MPa and the injury is the most serious. Specially, some designed obstacles put in the open space pipeline are conducive to producing more stronger gas explosion shock wave. Accordingly, the injury effect of methane explosion on mouse is enhanced under obstacles condition. When the methane volume fraction is 10%, the maximum explosion pressure can reach 0. 298 MPa under obstacles conditiorL It can be concluded that to reduce explosive accident impact, the obstacles in coal mine should be avoided. With the explosions increasing, the death pressure of mouse decreases.
基金Supported by The Shanghai Municipal Natural Science Foundation,No.11ZR1405500the Shanghai Municipal Science and Technology Commission grant,No.13140902401
文摘AIM: To establish an orthotopic mouse model of pancreatic cancer that mimics the pathological features of exocrine pancreatic adenocarcinoma.
基金Supported by Shanghai Science and Technology Development Foundation Project,No.12140900300Shanghai Municipal Commission of Health and Family Planning Project,No.20144Y0073+1 种基金Shanghai Public Health Clinical Center Project,No.2014M08National Science and Technology Major Project,No.2017ZX10304402-001-012
文摘AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liverhumanized mice.METHODS We crossed three mouse strains,including albumin(Alb)-cre transgenic mice,inducible diphtheria toxin receptor(DTR) transgenic mice and severe combined immune deficient(SCID)-beige mice,to create Alb-cre/DTR/SCID-beige(ADSB) mice,which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb(encoding ALB),the DTR stop signal flanked by two lox P sites can be deleted in the ADSB mice,resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally(i.p.) with diphtheria toxin(DT) and liver damage was assessed by serum alanine aminotransferase(ALT) level. Two days later,mouse livers were sampled for histological analysis,and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7,14,21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation.RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2,increased on day 7,and was lowest on day 4(range,10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/m L on day 4,then returned to background values on day 7. After transplantation of human liver cells,peripheral blood human ALB level was 1580 ± 454.8 ng/m L(range,750.2-3064.9 ng/m L) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice.CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications,such as hepatocyte transplantation,hepatic regeneration and drug metabolism.
基金supported by a Grant-in-Aid for Challenging Exploratory Research(No.26670044)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan(to CT)a Grant-in-Aid for a Cooperative Research Project from the Institute of Natural Medicine,University of Toyama,in 2014 and 2015(to CT)+1 种基金discretionary funds of the President of the University of Toyama,in 2014,2015,and 2016(to CT)the Natural Medicine and Biotechnology Research of Toyama Prefecture,Japan(to CT)
文摘In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine(100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous mat rine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama(approval No. A2013 INM-1 and A2016 INM-3) on May 7, 2013 and May 17, 2016, respectively.
基金This work was supported by Major State Basic Research Development program of China(2004CB518604)the National High Technology Research and Development Program of China(2004AA231041)the National Natural Science Foundation of China(30425027).
文摘Epidermal-type transglutaminase 3 (TGM3) is involved in the cross-linking of structural proteins to form the cornifiedenvelope in the epidermis. In the present study, we detected the expression of TGM3 in the mouse embryo using RT-PCR.TGM3 mRNA is weakly presented from E11.5 to E14.5 and increases significantly from E15.5 to birth. Then wedetermined the spatial and temporal expression pattern of TGM3 in the skin and other organs by in situ hybridization. Wefound a deprivation of TGM3 in skin at E11.5, while a rich supply in periderm cells and a weak expression in basal cellsfrom E12.5 to E14.5. From the period of E15.5 to E16.5, after keratinization in the epidermis, TGM3 was expressed inthe granular and cornified layers. The electron microscopic observation of the C57BL/6J mouse limb bud skin develop-ment provided several morphological evidences for the epidermal differentiation. The above findings suggest that theexpression of TGM3 plays a important role in the epidermis differentiation in embryogenesis.
基金Supported by National Natural Science Foundation of China,No.30940069the Natural Sciences Foundation of Beijing,No.7102127
文摘AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015RIDIAIA01059432)
文摘Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th-6th lumbar spinal cord in a mouse model of spared nerve injury(SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry(MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain,and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.