The hot deformation behavior of a high Ti 6061 aluminum alloy in the temperature range from 350 to 510 ℃ and strain rate range from 0.001 to 10 s^-1 was investigated using stress-strain curve analysis, processing map...The hot deformation behavior of a high Ti 6061 aluminum alloy in the temperature range from 350 to 510 ℃ and strain rate range from 0.001 to 10 s^-1 was investigated using stress-strain curve analysis, processing map, transmission electron microscopy and electron backscatter diffraction analysis. The results show that the peak stress decreases with increasing deformation temperatures and decreasing strain rate. The average deformation activation energy is 185 kJ/mol in the parameter range investigated. The flow stress model was constructed. The main softening mechanism is dynamic recovery. The processing map was obtained using dynamic material model, and the suggested processing window is 400-440℃ and 0.001-0.1 s^-1.展开更多
The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, an...The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, and the solidification behavior of 6061 wrought aluminum alloy during the rheo-diecasting process was analyzed using OM, SEM, EDS and EBSD. The results indicate that the isothermal holding process during slurry preparation has great effect on primary α(Al) particles(α1), but has little effect on the microstructure of secondary solidification in the process of thin-walled rheo-diecasting. Nucleation is expected to take place in the entire remaining liquid when the remaining liquid fills the die cavity, and the secondary solidification particles(α2) are formed after the process of stable growth, unstable growth and merging. The solute concentration of remaining liquid is higher than that of the original alloy due to the existence of α1 particles, hence the contents of Mg and Si in α2 particles are higher than those in α1 particles.展开更多
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and t...The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.展开更多
文摘The hot deformation behavior of a high Ti 6061 aluminum alloy in the temperature range from 350 to 510 ℃ and strain rate range from 0.001 to 10 s^-1 was investigated using stress-strain curve analysis, processing map, transmission electron microscopy and electron backscatter diffraction analysis. The results show that the peak stress decreases with increasing deformation temperatures and decreasing strain rate. The average deformation activation energy is 185 kJ/mol in the parameter range investigated. The flow stress model was constructed. The main softening mechanism is dynamic recovery. The processing map was obtained using dynamic material model, and the suggested processing window is 400-440℃ and 0.001-0.1 s^-1.
基金Project(51464031)supported by the National Natural Science Foundation of China
文摘The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, and the solidification behavior of 6061 wrought aluminum alloy during the rheo-diecasting process was analyzed using OM, SEM, EDS and EBSD. The results indicate that the isothermal holding process during slurry preparation has great effect on primary α(Al) particles(α1), but has little effect on the microstructure of secondary solidification in the process of thin-walled rheo-diecasting. Nucleation is expected to take place in the entire remaining liquid when the remaining liquid fills the die cavity, and the secondary solidification particles(α2) are formed after the process of stable growth, unstable growth and merging. The solute concentration of remaining liquid is higher than that of the original alloy due to the existence of α1 particles, hence the contents of Mg and Si in α2 particles are higher than those in α1 particles.
基金Project(50874049) supported by the National Natural Science Foundation of ChinaProject(2008DFB50020) supported by International Science and Technology Cooperation of Ministry of Science and Technology of China
文摘The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.