In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so...In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference.展开更多
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac...For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset.展开更多
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu...This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis.展开更多
Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of ...Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of road scenes is crucial for reference in asset management,construction,and maintenance.Light detection and ranging(Li DAR)technology is increasingly employed to generate high-quality point clouds for road inventory.In this paper,we specifically investigate the use of Li DAR data for road 3D modeling.The purpose of this review is to provide references about the existing work on the road 3D modeling based on Li DAR point clouds,critically discuss them,and provide challenges for further study.Besides,we introduce modeling standards for roads and discuss the components,types,and distinctions of various Li DAR measurement systems.Then,we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction.Furthermore,we systematically introduce point cloud-based 3D modeling methods,namely,parametric modeling and surface reconstruction.Parameters and rules are used to define model components based on geometric and non-geometric information,whereas surface modeling is conducted through individual faces within its geometry.Finally,we discuss and summarize future research directions in this field.This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on Li DAR point clouds.展开更多
BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of impl...BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of implementing 3D point cloud data in BIM and VDC (virtual design and construction) applications during various stages of a project life cycle and the challenges associated with processing the huge amount of 3D point cloud data. Conversion from discrete 3D point cloud raster data to geometric/vector BIM data remains to be a labor-intensive process. The needs for intelligent geometric feature detection/reconstruction algorithms for automated point cloud processing and issues related to data management are discussed. This paper also presents an innovative approach for integrating 3D point cloud data with BIM to efficiently augment built environment design, construction and management.展开更多
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3...Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.展开更多
The landscape pattern metrics can quantitatively describe the characteristics of landscape pattern and are widely used in various fields of landscape ecology.Due to the lack of vertical information,2D landscape metric...The landscape pattern metrics can quantitatively describe the characteristics of landscape pattern and are widely used in various fields of landscape ecology.Due to the lack of vertical information,2D landscape metrics cannot delineate the vertical characteristics of landscape pattern.Based on the point clouds,a high-resolution voxel model and several voxel-based 3D landscape metrics were constructed in this study and 3D metrics calculation results were compared with that of 2D metrics.The results showed that certain quantifying difference exists between 2D and 3D landscape metrics.For landscapes with different components and spatial configurations,significant difference was disclosed between 2D and 3D landscape metrics.3D metrics can better reflect the real spatial structure characteristics of the landscape than 2D metrics.展开更多
Fish morphological phenotypes are important resources in artificial breeding,functional gene mapping,and population-based studies in aquaculture and ecology.Traditional morphological measurement of phenotypes is rathe...Fish morphological phenotypes are important resources in artificial breeding,functional gene mapping,and population-based studies in aquaculture and ecology.Traditional morphological measurement of phenotypes is rather expensive in terms of time and labor.More importantly,manual measurement is highly dependent on operational experience,which can lead to subjective phenotyping results.Here,we developed 3DPhenoFish software to extract fish morphological phenotypes from three-dimensional(3D)point cloud data.Algorithms for background elimination,coordinate normalization,image segmentation,key point recognition,and phenotype extraction were developed and integrated into an intuitive user interface.Furthermore,18 key points and traditional 2D morphological traits,along with 3D phenotypes,including area and volume,can be automatically obtained in a visualized manner.Intuitive fine-tuning of key points and customized definitions of phenotypes are also allowed in the software.Using 3DPhenoFish,we performed high-throughput phenotyping for four endemic Schizothoracinae species,including Schizopygopsis younghusbandi,Oxygymnocypris stewartii,Ptychobarbus dipogon,and Schizothorax oconnori.Results indicated that the morphological phenotypes from 3DPhenoFish exhibited high linear correlation(>0.94)with manual measurements and offered informative traits to discriminate samples of different species and even for different populations of the same species.In summary,we developed an efficient,accurate,and customizable tool,3DPhenoFish,to extract morphological phenotypes from point cloud data,which should help overcome traditional challenges in manual measurements.3DPhenoFish can be used for research on morphological phenotypes in fish,including functional gene mapping,artificial selection,and conservation studies.3DPhenoFish is an open-source software and can be downloaded for free at https://github.com/lyh24k/3DPhenoFish/tree/master.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute...Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such a...Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such as digital twins and smart factory management.In this study,3D models of mining engineering structures were built based on the CityGML standard.For collecting spatial data,the two most popular geospatial technologies,namely UAV-SfM and TLS were employed.The accuracy of the UAV survey was at the centimeter level,and it satisfied the absolute positional accuracy requirement of creat-ing all levels of detail(LoD)according to the CityGML standard.Therefore,the UAV-SfM point cloud dataset was used to build LoD 2 models.In addition,the comparison between the UAV-SfM and TLS sub-clouds of facades and roofs indicates that the UAV-SfM and TLS point clouds of these objects are highly consistent,therefore,point clouds with a higher level of detail and accuracy provided by the integration of UAV-SfM and TLS were used to build LoD 3 models.The resulting 3D CityGML models include 39 buildings at LoD 2,and two mine shafts with hoistrooms,headframes,and sheave wheels at LoD3.展开更多
After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting anci...After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. .展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions a...The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.展开更多
Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be con...Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).展开更多
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap...This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.展开更多
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact...Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.展开更多
基金supported by the Innovation and Entrepreneurship Training Program Topic for College Students of North China University of Technology in 2023.
文摘In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference.
基金supported by the National Natural Science Foundation of China (62173103)the Fundamental Research Funds for the Central Universities of China (3072022JC0402,3072022JC0403)。
文摘For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset.
基金funded in part by the Key Project of Nature Science Research for Universities of Anhui Province of China(No.2022AH051720)in part by the Science and Technology Development Fund,Macao SAR(Grant Nos.0093/2022/A2,0076/2022/A2 and 0008/2022/AGJ)in part by the China University Industry-University-Research Collaborative Innovation Fund(No.2021FNA04017).
文摘This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis.
基金supported by the projects found by the Jiangsu Transportation Science and Technology Project under Grants 2020Y191(1)Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grants KYCX23_0294。
文摘Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of road scenes is crucial for reference in asset management,construction,and maintenance.Light detection and ranging(Li DAR)technology is increasingly employed to generate high-quality point clouds for road inventory.In this paper,we specifically investigate the use of Li DAR data for road 3D modeling.The purpose of this review is to provide references about the existing work on the road 3D modeling based on Li DAR point clouds,critically discuss them,and provide challenges for further study.Besides,we introduce modeling standards for roads and discuss the components,types,and distinctions of various Li DAR measurement systems.Then,we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction.Furthermore,we systematically introduce point cloud-based 3D modeling methods,namely,parametric modeling and surface reconstruction.Parameters and rules are used to define model components based on geometric and non-geometric information,whereas surface modeling is conducted through individual faces within its geometry.Finally,we discuss and summarize future research directions in this field.This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on Li DAR point clouds.
文摘BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of implementing 3D point cloud data in BIM and VDC (virtual design and construction) applications during various stages of a project life cycle and the challenges associated with processing the huge amount of 3D point cloud data. Conversion from discrete 3D point cloud raster data to geometric/vector BIM data remains to be a labor-intensive process. The needs for intelligent geometric feature detection/reconstruction algorithms for automated point cloud processing and issues related to data management are discussed. This paper also presents an innovative approach for integrating 3D point cloud data with BIM to efficiently augment built environment design, construction and management.
基金National Natural Science Foundation of China(Nos.41861054,41371423,61966010)National Key R&D Program of China(No.2016YFB0502105)。
文摘Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.
文摘The landscape pattern metrics can quantitatively describe the characteristics of landscape pattern and are widely used in various fields of landscape ecology.Due to the lack of vertical information,2D landscape metrics cannot delineate the vertical characteristics of landscape pattern.Based on the point clouds,a high-resolution voxel model and several voxel-based 3D landscape metrics were constructed in this study and 3D metrics calculation results were compared with that of 2D metrics.The results showed that certain quantifying difference exists between 2D and 3D landscape metrics.For landscapes with different components and spatial configurations,significant difference was disclosed between 2D and 3D landscape metrics.3D metrics can better reflect the real spatial structure characteristics of the landscape than 2D metrics.
基金supported by the National Natural Science Foundation of China(32072980)Key Research and Development Projects in Tibet(XZ202001ZY0016N,XZ201902NB02,XZNKY-2019-C-053)。
文摘Fish morphological phenotypes are important resources in artificial breeding,functional gene mapping,and population-based studies in aquaculture and ecology.Traditional morphological measurement of phenotypes is rather expensive in terms of time and labor.More importantly,manual measurement is highly dependent on operational experience,which can lead to subjective phenotyping results.Here,we developed 3DPhenoFish software to extract fish morphological phenotypes from three-dimensional(3D)point cloud data.Algorithms for background elimination,coordinate normalization,image segmentation,key point recognition,and phenotype extraction were developed and integrated into an intuitive user interface.Furthermore,18 key points and traditional 2D morphological traits,along with 3D phenotypes,including area and volume,can be automatically obtained in a visualized manner.Intuitive fine-tuning of key points and customized definitions of phenotypes are also allowed in the software.Using 3DPhenoFish,we performed high-throughput phenotyping for four endemic Schizothoracinae species,including Schizopygopsis younghusbandi,Oxygymnocypris stewartii,Ptychobarbus dipogon,and Schizothorax oconnori.Results indicated that the morphological phenotypes from 3DPhenoFish exhibited high linear correlation(>0.94)with manual measurements and offered informative traits to discriminate samples of different species and even for different populations of the same species.In summary,we developed an efficient,accurate,and customizable tool,3DPhenoFish,to extract morphological phenotypes from point cloud data,which should help overcome traditional challenges in manual measurements.3DPhenoFish can be used for research on morphological phenotypes in fish,including functional gene mapping,artificial selection,and conservation studies.3DPhenoFish is an open-source software and can be downloaded for free at https://github.com/lyh24k/3DPhenoFish/tree/master.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
基金National Natural Science Foundation of China(No.41801379)Fundamental Research Funds for the Central Universities(No.2019B08414)National Key R&D Program of China(No.2016YFC0401801)。
文摘Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金his research was funded by Hanoi university of Mining and Geology,Grant Number T22-47.
文摘Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such as digital twins and smart factory management.In this study,3D models of mining engineering structures were built based on the CityGML standard.For collecting spatial data,the two most popular geospatial technologies,namely UAV-SfM and TLS were employed.The accuracy of the UAV survey was at the centimeter level,and it satisfied the absolute positional accuracy requirement of creat-ing all levels of detail(LoD)according to the CityGML standard.Therefore,the UAV-SfM point cloud dataset was used to build LoD 2 models.In addition,the comparison between the UAV-SfM and TLS sub-clouds of facades and roofs indicates that the UAV-SfM and TLS point clouds of these objects are highly consistent,therefore,point clouds with a higher level of detail and accuracy provided by the integration of UAV-SfM and TLS were used to build LoD 3 models.The resulting 3D CityGML models include 39 buildings at LoD 2,and two mine shafts with hoistrooms,headframes,and sheave wheels at LoD3.
文摘After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. .
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金the Key Project of Joint Funds of Yalongjiang River Development of the National Natural Science Foundation of China (No. 50539050)
文摘The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.
文摘Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).
基金supported by the Science Committee of RK MES under the Grant No. AP05130525。
文摘This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333,42277147).
文摘Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.