期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
基于L_(1/2)稀疏性和峰度平滑约束非负矩阵分解的高光谱图像解混
1
作者 杨国亮 张佳琦 盛杨杨 《现代信息科技》 2025年第5期45-50,共6页
为了解决传统高光谱图像解混方法中存在的解混效率低、计算复杂和易受噪声和异常点影响等问题,提出了一种基于L_(1/2)稀疏性和峰度平滑约束非负矩阵分解(L_(1/2)-KSNMF)的算法。针对高光谱图像中非线性混合情形,该方法首先引入了L_(1/2... 为了解决传统高光谱图像解混方法中存在的解混效率低、计算复杂和易受噪声和异常点影响等问题,提出了一种基于L_(1/2)稀疏性和峰度平滑约束非负矩阵分解(L_(1/2)-KSNMF)的算法。针对高光谱图像中非线性混合情形,该方法首先引入了L_(1/2)范数作为稀疏度度量,提高解混的准确性;引入峰度平滑约束,将空间信息融合到解混模型中,提高解混结果的空间连续性;实验结果表明,该算法在解混准确性和计算效率以及从高光谱数据中提取端元光谱方面都表现出优异的性能。 展开更多
关键词 高光谱图像 矩阵分解 L_(1/2)稀疏约束 高光谱图像解混(HU)
在线阅读 下载PDF
约束传播自适应半监督非负矩阵分解聚类算法
2
作者 朱拓基 林浩申 +2 位作者 赵伟豪 王靖 杨晓君 《计算机工程与应用》 CSCD 北大核心 2024年第13期81-91,共11页
对称非负矩阵分解(SNMF)能够自然地捕获图表示中嵌入的聚类结构,是线性和非线性数据聚类应用的重要方法。但其对变量的初始化较敏感,初始化矩阵的质量好坏会较大地影响聚类性能,且在半监督聚类中面临着从有限的标记数据中学习更具辨别... 对称非负矩阵分解(SNMF)能够自然地捕获图表示中嵌入的聚类结构,是线性和非线性数据聚类应用的重要方法。但其对变量的初始化较敏感,初始化矩阵的质量好坏会较大地影响聚类性能,且在半监督聚类中面临着从有限的标记数据中学习更具辨别力表示的挑战。针对以上问题,提出了一种约束传播自适应半监督非负矩阵分解聚类算法(constrained propagation self-adaptived semi-supervised non-negative matrix factorization clustering algorithm,CPS3NMF)。该算法将有限约束传播到无约束数据点,构建出带有约束信息的相似矩阵,所获得的相似矩阵充当SNMF中分解的非负对称矩阵,还用于对分配矩阵进行图正则化,充分利用约束信息来保存数据空间的几何结构。同时结合SNMF对初始化特征的敏感性,使用自适应学习的权重对多个初始化矩阵的质量进行排序,集成多次聚类结果来逐步提高半监督聚类性能。在6个公开数据集上进行实验表明所提出的CPS3NMF算法优于其他先进算法,证明了其在半监督聚类中的有效性。 展开更多
关键词 对称矩阵分解 半监督学习 约束传播 聚类
在线阅读 下载PDF
稀疏约束的L21增量式非负矩阵分解研究
3
作者 杨亮东 赵妍杰 潘正红 《科技资讯》 2024年第12期240-244,共5页
针对新增数据增大而引起的运算效率增大的现象,提出了一种稀疏约束的增量式非负矩阵分解改进算法。该算法是在加入稀疏条件的情况下对增量数据使用L21范数。首先对初始数据进行经典非负矩阵分解,其次再利用其分解结果参与增量数据的运算... 针对新增数据增大而引起的运算效率增大的现象,提出了一种稀疏约束的增量式非负矩阵分解改进算法。该算法是在加入稀疏条件的情况下对增量数据使用L21范数。首先对初始数据进行经典非负矩阵分解,其次再利用其分解结果参与增量数据的运算,使目标函数在分解计算中具有较好的收敛效果和分解后数据有较好的稀疏度。实验部分主要是将该算法与增量式非负矩阵分解、稀疏约束的增量式非负矩阵分解、经典非负矩阵分解算法进行对比,得出在分解后数据的稀疏度和收敛快慢方面该算法均优于其他3个算法。 展开更多
关键词 矩阵分解 增量式学习 图像识别 稀疏约束 L21范数
在线阅读 下载PDF
基于约束非负矩阵分解的高光谱图像解混快速算法 被引量:11
4
作者 刘建军 吴泽彬 +2 位作者 韦志辉 肖亮 孙乐 《电子学报》 EI CAS CSCD 北大核心 2013年第3期432-437,共6页
约束非负矩阵分解是高光谱图像解混中常用的方法.该方法的求解通常采用投影梯度法,其收敛速度、求解精度和算法稳定性都有待提高.为此,本文针对较优的最小体积约束,提出一种基于约束非负矩阵分解的高光谱图像解混快速算法.首先优化原有... 约束非负矩阵分解是高光谱图像解混中常用的方法.该方法的求解通常采用投影梯度法,其收敛速度、求解精度和算法稳定性都有待提高.为此,本文针对较优的最小体积约束,提出一种基于约束非负矩阵分解的高光谱图像解混快速算法.首先优化原有的最小体积约束模型,然后设计了基于交替方向乘子法的非凸项约束非负矩阵分解算法,最后通过奇异值分解优化迭代步骤.模拟和实际数据实验结果验证了本文算法的有效性. 展开更多
关键词 矩阵分解 交替方向乘子法 线性光谱解混 最小体积约束
在线阅读 下载PDF
一种基于部分基矩阵稀疏约束非负矩阵分解的抵抗大强度剪切攻击视频水印构架 被引量:10
5
作者 同鸣 张伟 +1 位作者 张建龙 陈涛 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1819-1826,共8页
该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视... 该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视频运动特征自适应控制水印嵌入强度。最后,在水印检测时,只要残余视频中包含有视频最小剩余子块数,就可以恢复出完整基矩阵,进而提取出完整水印。实验表明,与同类方法相比,该方法抵抗强剪切攻击的能力获得了较大程度提升。 展开更多
关键词 数字水印 剪切攻击 几何攻击 矩阵分解 稀疏约束
在线阅读 下载PDF
端元约束下的高光谱混合像元非负矩阵分解 被引量:7
6
作者 吴波 赵银娣 周小成 《计算机工程》 CAS CSCD 北大核心 2008年第22期229-230,233,共3页
提出一种端元约束条件下的非负矩阵分解方法来自动反演混合像元组分。以端元光谱之间的差距为约束条件,使得目标函数综合了影像的分解误差和端元光谱的影响,并以最大后验概率方法导出了限制性非负矩阵分解的迭代算法。成像光谱数据实验... 提出一种端元约束条件下的非负矩阵分解方法来自动反演混合像元组分。以端元光谱之间的差距为约束条件,使得目标函数综合了影像的分解误差和端元光谱的影响,并以最大后验概率方法导出了限制性非负矩阵分解的迭代算法。成像光谱数据实验结果表明该方法能够自动提取影像的端元光谱矩阵与组分信息,且分解精度比IEA方法高。 展开更多
关键词 矩阵分解 混合像元 约束 高光谱
在线阅读 下载PDF
基于非负矩阵分解的双重约束文本聚类算法 被引量:6
7
作者 马慧芳 赵卫中 史忠植 《计算机工程》 CAS CSCD 北大核心 2011年第24期161-163,共3页
提出一种基于非负矩阵分解(NMF)的双重约束文本聚类算法。在正交三重NMF模型中,加入文本空间的成对约束信息和词空间的类别约束信息,将不同的特征词项进行分类。利用迭代规则对原始的词-文档矩阵进行分解,获得文本聚类结果。与多种传统... 提出一种基于非负矩阵分解(NMF)的双重约束文本聚类算法。在正交三重NMF模型中,加入文本空间的成对约束信息和词空间的类别约束信息,将不同的特征词项进行分类。利用迭代规则对原始的词-文档矩阵进行分解,获得文本聚类结果。与多种传统半监督文本聚类算法的对比结果表明,该算法具有较高的聚类精度,能提供更准确和有效的聚类结果。 展开更多
关键词 半监督聚类 矩阵分解 成对约束 类别约束
在线阅读 下载PDF
基于图正则化和稀疏约束的半监督非负矩阵分解 被引量:5
8
作者 姜小燕 孙福明 李豪杰 《计算机科学》 CSCD 北大核心 2016年第7期77-82,105,共7页
非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对... 非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对基矩阵施加稀疏性约束,最后将它们整合于单个目标函数中。构造了一个有效的更新算法,并且在理论上证明了该算法的收敛性。在多个人脸数据库上的仿真结果表明,相对于NMF、GNMF、CNMF等算法,GCNMFS具有更好的聚类精度和稀疏性。 展开更多
关键词 矩阵分解 图正则 稀疏约束 半监督
在线阅读 下载PDF
双约束非负矩阵分解的复合故障信号分离方法 被引量:7
9
作者 王华庆 王梦阳 +3 位作者 宋浏阳 郝彦嵩 任帮月 董方 《振动工程学报》 EI CSCD 北大核心 2020年第3期590-596,共7页
为了分离复合故障振动信号,提出了一种采用双约束非负矩阵分解算法的信号分离方法。首先对原始振动信号采用短时傅里叶变换,通过时频分布信息来描述信号的局部故障特征;其次在传统非负矩阵分解算法中引入β散度约束与行列式约束,构成双... 为了分离复合故障振动信号,提出了一种采用双约束非负矩阵分解算法的信号分离方法。首先对原始振动信号采用短时傅里叶变换,通过时频分布信息来描述信号的局部故障特征;其次在传统非负矩阵分解算法中引入β散度约束与行列式约束,构成双约束非负矩阵分解算法,利用双约束非负矩阵分解算法实现数据的降维,并从低维空间中分离出特征分量;然后通过特征分量重构出时域波形,同时提出加权峰值因子的影响参数筛选重构信号;最后将筛选出的分离信号进行包络频谱分析,提取故障特征。仿真及轴承复合故障实验结果表明:所提出的方法可以有效分离并提取出外圈与滚动体冲击性特征,实现了轴承的复合故障诊断。 展开更多
关键词 故障诊断 轴承 矩阵分解算法 β散度约束 行列式约束
在线阅读 下载PDF
稀疏约束下非负矩阵分解的增量学习算法 被引量:8
10
作者 王万良 蔡竞 《计算机科学》 CSCD 北大核心 2014年第8期241-244,共4页
非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解... 非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解的结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和CBCL人脸数据库上的实验表明了该算法降维的有效性。 展开更多
关键词 子空间降维 稀疏约束 矩阵分解 增量学习
在线阅读 下载PDF
稀疏约束图正则非负矩阵分解的增量学习算法 被引量:3
11
作者 汪金涛 曹玉东 孙福明 《计算机应用》 CSCD 北大核心 2017年第4期1071-1074,共4页
针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在... 针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在稀疏约束和图正则化的条件下利用上一步的分解结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和PIE人脸数据库上的实验结果表明了该算法的有效性。 展开更多
关键词 矩阵分解 稀疏约束 图正则 几何结构 增量学习
在线阅读 下载PDF
使用稀疏约束非负矩阵分解算法的跨年龄人脸识别 被引量:4
12
作者 杜吉祥 翟传敏 叶永青 《智能系统学报》 北大核心 2012年第3期271-277,共7页
人脸识别技术中除光线、姿态、表情因素外,由于年龄变化而导致的人脸形状和纹理上的变化会极大程度地影响人脸识别系统性能.对此,提出了一种使用稀疏非负矩阵分解算法来实现人脸老化模拟,然后将此方法应用于具有年龄跨度的人脸识别上,... 人脸识别技术中除光线、姿态、表情因素外,由于年龄变化而导致的人脸形状和纹理上的变化会极大程度地影响人脸识别系统性能.对此,提出了一种使用稀疏非负矩阵分解算法来实现人脸老化模拟,然后将此方法应用于具有年龄跨度的人脸识别上,通过模拟虚拟样本来增强识别效果.实验结果表明,年龄跨度对人脸识别的确有较大的影响;当系数矩阵保持稀疏时,非负矩阵分解算法具有更强的特征提取能力;经过老化模拟增加虚拟样本后,其纹理老化效果明显地提高了跨年龄段的人脸识别的性能. 展开更多
关键词 人脸识别 跨年龄人脸识别 矩阵分解算法 稀疏约束 人脸老化模拟 虚拟样本
在线阅读 下载PDF
采用稀疏和平滑双约束的增量正交映射非负矩阵分解目标跟踪 被引量:1
13
作者 王华彬 田猛 +2 位作者 周健 施汉琴 陶亮 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第9期1658-1666,共9页
针对目标跟踪在遮挡和尺度变化等复杂背景下跟踪性能下降问题,联合稀疏约束、时间平滑约束以及增量投影非负矩阵分解,提出一种在线目标跟踪算法.首先利用非负矩阵分解学习一个基于部分表示的子空间,在此基础上添加稀疏约束提高处理遮挡... 针对目标跟踪在遮挡和尺度变化等复杂背景下跟踪性能下降问题,联合稀疏约束、时间平滑约束以及增量投影非负矩阵分解,提出一种在线目标跟踪算法.首先利用非负矩阵分解学习一个基于部分表示的子空间,在此基础上添加稀疏约束提高处理遮挡能力,添加时间平滑约束提高算法的稳定性;然后用增量方式完成子空间的在线更新,减少算法计算量、提高外观模型更新效率;最后在粒子滤波框架下,以重构误差为基础改进了观测似然函数,将具有最大后验概率的候选目标作为目标在当前帧的图像区域.实验结果表明,在各种含有遮挡和尺度变化的视频中,该算法可以更稳定地跟踪目标. 展开更多
关键词 矩阵分解 稀疏约束 平滑约束 局部特征 粒子滤波
在线阅读 下载PDF
光谱重建约束非负矩阵分解的高光谱与全色图像融合 被引量:4
14
作者 官铮 邓扬琳 聂仁灿 《计算机科学》 CSCD 北大核心 2021年第9期153-159,共7页
基于光谱重建约束的非负矩阵分解,提出了一种高光谱与全色图像的有效解混方法。首先在高光谱图像的非负矩阵分解中引入光谱重建误差最小化的正则项,通过多目标寻优寻找最佳的正则项参数,以鼓励分解的光谱特征矩阵包含更真实的光谱特征;... 基于光谱重建约束的非负矩阵分解,提出了一种高光谱与全色图像的有效解混方法。首先在高光谱图像的非负矩阵分解中引入光谱重建误差最小化的正则项,通过多目标寻优寻找最佳的正则项参数,以鼓励分解的光谱特征矩阵包含更真实的光谱特征;然后对全色图像进行非负矩阵分解,以获得描述图像细节的丰度矩阵;最后利用光谱特征矩阵和丰度矩阵重建得到融合结果。实验仿真结果表明,所提方法的融合结果能在较好地保留全色图像细节的同时,有效地避免光谱畸变,在视觉效果和客观评价方面均优于传统方法。 展开更多
关键词 图像融合 高光谱与全色图像 矩阵分解 光谱重建约束 多目标寻优
在线阅读 下载PDF
用于高光谱图像解混的空谱重加权稀疏多层非负矩阵分解
15
作者 唐继明 保文星 +2 位作者 雷冰冰 冯伟 屈克文 《光学精密工程》 CSCD 北大核心 2024年第22期3348-3365,共18页
针对多层非负矩阵分解不能充分利用高光谱遥感图像的空间-光谱特征,以及高光谱图像中普遍存在的噪声问题,本文提出一种新的空间-光谱重加权的稀疏多层非负矩阵分解的解混算法。首先,采用子空间聚类算法构建高光谱图像的空间特征空间权... 针对多层非负矩阵分解不能充分利用高光谱遥感图像的空间-光谱特征,以及高光谱图像中普遍存在的噪声问题,本文提出一种新的空间-光谱重加权的稀疏多层非负矩阵分解的解混算法。首先,采用子空间聚类算法构建高光谱图像的空间特征空间权重。其次,使用超像素分割算法对高光谱图像进行超像素分割,并计算超像素之间的相似度,使用KMEANS++算法对超像素进行聚类,接着在超像素内部计算像素级相似度,以此构建出光谱权重。将空间权重和光谱权重融合,融合之后的空间-光谱权重用于表征高光谱图像的空间-光谱信息。然后,使用SUnSAL算法计算稀疏降噪权重,可以有效降低噪声对解混性能的影响。最后,通过L14范数对模型的端元和丰度进行约束,以提升模型的解混性能。与五种解混算法的实验结果进行对比,所提算法在合成数据集上计算所得的平均光谱角距离和均方根误差均为最优,在Jasper Ridge和Cuprite两个真实数据集上也取得良好的解混结果。所提算法在各个数据集上的端元估计误差降低1.49%~4.68%,丰度估计误差降低1.83%~4.18%。 展开更多
关键词 高光谱图像解混 多层矩阵分解 空间-光谱权重 降噪 稀疏约束
在线阅读 下载PDF
基于稀疏约束非负矩阵分解的K-Means聚类算法 被引量:8
16
作者 韩素青 贾茹 《数据采集与处理》 CSCD 北大核心 2017年第6期1216-1222,共7页
为了提高K-Means聚类算法在高维数据下的聚类效果,提出一种基于稀疏约束非负矩阵分解的K-Means聚类算法。该算法在最优保持原始数据本质的前提下,通过在非负矩阵分解过程中对基矩阵列向量施加l1与l2范数稀疏约束,首先挖掘嵌入在高维数... 为了提高K-Means聚类算法在高维数据下的聚类效果,提出一种基于稀疏约束非负矩阵分解的K-Means聚类算法。该算法在最优保持原始数据本质的前提下,通过在非负矩阵分解过程中对基矩阵列向量施加l1与l2范数稀疏约束,首先挖掘嵌入在高维数据中的低维数据结构,实现高维数据的低维表示,然后利用在低维数据聚类中性能良好的K-Means算法对稀疏降维后的数据进行聚类。实验结果表明提出的算法可行,并且在处理高维数据上有效。 展开更多
关键词 高维数据 矩阵分解 稀疏约束 K-MEANS聚类
在线阅读 下载PDF
双重约束非负矩阵分解与改进正交匹配追踪算法的语音增强 被引量:4
17
作者 张开生 赵小芬 《河南科技大学学报(自然科学版)》 CAS 北大核心 2021年第1期54-60,I0004,I0005,共9页
针对非负矩阵分解算法实现语音增强效果不理想的问题,提出了一种双重约束非负矩阵分解结合改进正交匹配追踪算法的语音增强方法。采用时间约束及稀疏度约束的双重约束方式改进非负矩阵分解算法,使得分解后的数据更能反映出语音特征。通... 针对非负矩阵分解算法实现语音增强效果不理想的问题,提出了一种双重约束非负矩阵分解结合改进正交匹配追踪算法的语音增强方法。采用时间约束及稀疏度约束的双重约束方式改进非负矩阵分解算法,使得分解后的数据更能反映出语音特征。通过改进正交匹配追踪算法提升重构精度,并结合语音信号在时频域的分布特征,引入低通滤波器进一步平滑重构后的语音。采用4个评价指标对该算法进行评价。实验结果表明:在不降低运行时间效率的情况下,相较于对比算法,感知语音质量评估值(PESQ)提升14.71%~45.70%,对数谱距离(LSD)下降18.14%~25.47%,信源失真率(SDR)由-5~11提升至2~14。 展开更多
关键词 矩阵分解 语音增强 双重约束 改进正交匹配追踪算法 重构精度 低通滤波器 低信噪比
在线阅读 下载PDF
多重约束非负矩阵分解的非平稳噪声语音增强(英文) 被引量:1
18
作者 邹月娴 刘诗涵 王迪松 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第6期761-768,共8页
低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务.为了提高传统的基于非负矩阵分解(nonnegative matrix factorization,NMF)的语音增强算法性能,同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性,本文... 低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务.为了提高传统的基于非负矩阵分解(nonnegative matrix factorization,NMF)的语音增强算法性能,同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性,本文提出了一种基于多重约束的非负矩阵分解语音增强算法(multi-constraint nonnegative matrix factorization speech enhancement,MC–NMFSE).在训练阶段,采用干净语音训练数据集和噪声训练数据集分别构建语音字典和噪声字典.在语音增强阶段,在非负矩阵分解目标函数中增加语音分量的稀疏性约束和噪声信号的低秩性约束条件,MC–NMFSE能够更好地从带噪语音中获得语音分量的表示,从而提高语音增强效果.通过实验表明,在大量不同非平稳噪声条件和不同信噪比条件下,与传统的基于NMF的语音增强方法相比,MC–NMFSE能获得较低的语音失真和更好的非稳态噪声抑制能力. 展开更多
关键词 语音增强 低秩约束 稀疏约束 矩阵分解 稳态噪声
在线阅读 下载PDF
正交指数约束的平滑非负矩阵分解方法及应用
19
作者 同鸣 张伟 吴扬成 《系统工程与电子技术》 EI CSCD 北大核心 2013年第10期2221-2228,共8页
提出了一种正交指数约束的平滑非负矩阵分解方法,该方法将非负矩阵分解为基矩阵、列归一化平滑矩阵和系数矩阵之积,同时在目标函数中加入了正交指数约束,保证了低维特征的非负性和局部化,减小了分解误差,提高了稀疏性的调节能力。将该... 提出了一种正交指数约束的平滑非负矩阵分解方法,该方法将非负矩阵分解为基矩阵、列归一化平滑矩阵和系数矩阵之积,同时在目标函数中加入了正交指数约束,保证了低维特征的非负性和局部化,减小了分解误差,提高了稀疏性的调节能力。将该方法应用于数据降维、特征稀疏性比较、有遮挡人脸识别和视频运动特征提取。实验结果表明,该方法比同类方法具有更好的性能。 展开更多
关键词 矩阵分解 稀疏特征 正交约束 特征提取 有遮挡人脸识别
在线阅读 下载PDF
基于L_(1/2)范数约束增量非负矩阵分解的SAR目标识别
20
作者 张慧 党思航 崔宗勇 《计算机应用研究》 CSCD 北大核心 2018年第2期628-631,共4页
增量非负矩阵分解(INMF)随目标样本增加逐渐更新分解模型,能够有效解决NMF算法的计算代价随样本增加而成倍增长的问题。然而INMF在使NMF具备增量学习能力的同时,并未考虑NMF分解矩阵的稀疏性对识别性能的提升作用。针对上述问题,提出基... 增量非负矩阵分解(INMF)随目标样本增加逐渐更新分解模型,能够有效解决NMF算法的计算代价随样本增加而成倍增长的问题。然而INMF在使NMF具备增量学习能力的同时,并未考虑NMF分解矩阵的稀疏性对识别性能的提升作用。针对上述问题,提出基于L1/2范数约束的增量非负矩阵分解(L1/2-INMF)算法,并应用于SAR目标识别。L1/2-INMF采用L1/2范数实时约束增量过程中的NMF分解矩阵,能够在不增加计算复杂度的同时,提升识别性能。针对MSTAR数据集的仿真实验结果表明,提出的L1/2-INMF能够解决传统非负矩阵分解方法计算代价随样本增加而增加的问题。 展开更多
关键词 增量矩阵分解 合成孔径雷达 目标识别 L1/2范数约束
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部