提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通...提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能.展开更多
在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Y...在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能.展开更多
文摘提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能.
文摘在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能.