Climate is a major driver of vector proliferation and arbovirus transmission, with temperature being a primary focus of research. Unlike other mosquito-borne diseases, Zika virus transmission involves both sexual tran...Climate is a major driver of vector proliferation and arbovirus transmission, with temperature being a primary focus of research. Unlike other mosquito-borne diseases, Zika virus transmission involves both sexual transmission between humans and environmental transmission pathways, a characteristic largely overlooked in existing studies. This paper develops a temperature-dependent transmission model based on the unique transmission characteristics of the Zika virus. We estimated the historical transmission of Zika virus in Brazil using a temperature-dependent basic reproduction number to assess the impact of climate change on Zika virus spread in the region. Results indicate that the temperature range for Zika virus outbreaks is between 23.34˚C and 33.99˚C, peaking at 3.2 at 29.4˚C. This range and peak temperature are approximately 1˚C lower than those found in models that do not consider environmental transmission pathways. By incorporating seasonal variations into the model and categorizing ten Brazilian cities into five climatic types based on temperature changes, we simulated historical and future daily average temperatures using the GFDL-ESM4 temperature model. We analyzed the control periods and virus risks across different regions and projected Zika virus transmission risk in Brazil under four Shared Socioeconomic Pathways (SSP126, SSP245, SSP370, and SSP585). The results suggest that under the SSP126 scenario, the control periods will extend by 2 - 3 months with rising temperatures. This study concludes by discussing the impact of temperature changes on control measures, emphasizing the importance of reducing adult mosquito populations through the Sterile Insect Technique (SIT) to mitigate future risks.展开更多
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data...Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.展开更多
The present study is concentrated on the empirical studies on the circulation in the Tampa Bay by analyzing velocity data at the Skyway Bridge Station in the Tampa Bay. Analyses focus on three factors responsible for ...The present study is concentrated on the empirical studies on the circulation in the Tampa Bay by analyzing velocity data at the Skyway Bridge Station in the Tampa Bay. Analyses focus on three factors responsible for the circulation: tides, winds and buoyancy gradients. The analysis of the current data obtained at the Skyway Bridge Station shows these three components of the circulation: the tidal currents are nearly uniform with depth; a vigorous and persistent buoyancy-driven mean now is directed into the bay at this location with speed of about 6 -- 8 cm/s; and synoptic scale wind fluctuations result in similarly large current fluctuations with winds blowing into the bay causing currents to flow out of the bay, and the versa.展开更多
Thermocapillary-and buoyancy-driven convection in open cavities with differentially heated endwalls is investigated by numerical solutions of the two- dimensional Navier-Stokes equations coupled with the energy equati...Thermocapillary-and buoyancy-driven convection in open cavities with differentially heated endwalls is investigated by numerical solutions of the two- dimensional Navier-Stokes equations coupled with the energy equation. We studied the thermocapillary and buoyancy convection in the cavities, filled with low-Prandtl- number fluids, with two aspect-ratios A=1 and 4, Grashof number up to 10~5 and Reynolds number |Re|≤10~4. Our results show that thermocapillary can have a quite significant effect on the stability of a primarily buoyancy-driven flow, as well as on the flow structures and dynamic behavior for both additive effect (i.e., positive Re) and opposing effect (i.e., negative Re).展开更多
Ecological experiments were conducted to examine the effects of seawater containing elevated par- tial pressure of carbon dioxide (p CO2 800 × 10 -6 , 2 000 × 10 -6 , 5 000 × 10 -6 and 10 000 × 10...Ecological experiments were conducted to examine the effects of seawater containing elevated par- tial pressure of carbon dioxide (p CO2 800 × 10 -6 , 2 000 × 10 -6 , 5 000 × 10 -6 and 10 000 × 10 -6 ) on the survival and reproduction of female Acartia pacifica, Acartia spinicauda, Calanus sinicus and Centropages tenuiremis, which are the dominant copepods in the southern coastal waters of China. The results show that the effects of elevated p CO2 on the survival rates of copepods were species-specific. C. sinicus, which was a macro-copepod, had a higher survival rate (62.01%–71.96%) than the other three species (5.00%–26.67%) during the eight day exposure. The egg production rates of C. sinicus, A. spinicauda and C. tenuiremis were significantly inhibited by the increased p CO2 and the exposure time duration. There were significantly negative impacts on the egg hatching success of A. spinicauda and C. tenuiremis in the p CO2 2 000 × 10 -6 and 10 000 × 10 -6 groups, and, in addition, the exposure time had noticeably impacts on these rates too. This study indicates that the reproductive performances of copepods were sensitive to elevated p CO2 , and that the response of different copepod species to acidified seawater was different. Furthermore, the synergistic effects of seawater acidification and climate change or other pollutant stresses on organisms should be given more attention.展开更多
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b...PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.展开更多
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i...During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes.展开更多
Cable-driven parallel robots(CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several adv...Cable-driven parallel robots(CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several advantages, including larger workspaces, higher payload-to-weight ratio and lower manufacturing costs rather than rigid-link robots. In this paper, the history of the development of CDPRs is introduced and several successful latest application cases of CDPRs are presented. The theory development of CDPRs is introduced focusing on design, performance analysis and control theory. Research on CDPRs gains wide attention and is highly motivated by the modern engineering demand for large load capacity and workspace. A number of exciting advances in CDPRs are summarized in this paper since it is proposed in the 1980 s, which points to a fruitful future both in theory and application. In order to meet the increasing requirements of robot in different areas, future steps foresee more in-depth research and extension applications of CDPRs including intelligent control, composite materials, integrated and reconfigurable design.展开更多
Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a compl...Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction.展开更多
The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly...The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.展开更多
Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have...Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.展开更多
Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the re...Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary...Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.展开更多
To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions...To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions of the machine and tooling during machining processes,the relevant diagnosis systems currently adopted in industries are incompetent.To address this issue,this paper presents a novel data-driven diagnosis system for anomalies.In this system,power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis.To facilitate the analysis,preprocessing mechanisms have been designed to de-noise,normalize,and align the monitored data.Important features are extracted from the monitored data and thresholds are defined to identify anomalies.Considering the dynamic conditions of the machine and tooling during machining processes,the thresholds used to identify anomalies can vary.Based on historical data,the values of thresholds are optimized using a fruit fly optimization(FFO)algorithm to achieve more accurate detection.Practical case studies were used to validate the system,thereby demonstrating the potential and effectiveness of the system for industrial applications.展开更多
In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with ir...In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.展开更多
Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic p...Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic propulsion of light-driven Ti O_2–Au Janus micromotors in aqueous dye solutions. Compared to the velocities of these micromotors in pure water, 1.7, 1.5, and 1.4 times accelerated motions were observed for them in aqueous solutions of methyl blue(10-5g L^(-1)), cresol red(10^(-4)g L^(-1)),and methyl orange(10^(-4)g L^(-1)), respectively. We determined that the micromotor speed changes depending on thetype of dyes, due to variations in their photodegradation rates. In addition, following the deposition of a paramagnetic Ni layer between the Au and Ti O_2 layers, the micromotor can be precisely navigated under an external magnetic field. Such magnetic micromotors not only facilitate the recycling of micromotors, but also allow reusability in the context of dye detection and degradation.In general, such photocatalytic micro-/nanomotors provide considerable potential for the rapid detection and ‘‘on-thefly'' degradation of dye pollutants in aqueous environments.展开更多
By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the...By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.展开更多
The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stabil...The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.展开更多
Many design engineers in cross-domain industries have attended training classes of TRIZ to improve their innovative abilities in China. Most of them are successful, but others are not. So the latest target of the trai...Many design engineers in cross-domain industries have attended training classes of TRIZ to improve their innovative abilities in China. Most of them are successful, but others are not. So the latest target of the trainers is to improve the training process used now in industry in China and to make the engineers to understand the basic principles of TRIZ better. Based on the mass-engineer-oriented training model(MEOTM) and mechanical engineers’ design cases, a relationship between managing activities about the opportunities for innovation and the training process is set up. It is shown that the inventive problems come first from opportunity searching for engineers. A training and gate system for evaluation is developed to involve the managing activities of the companies in the training process. Then comparison between the general analogous process and the application of TRIZ is made, which shows the advantages and depth principles of TRIZ for the engineers to apply them confidently. Lastly a new process is formed in which opportunity searching, engineers training, inventive problems identifying and solving,and three redesign paths are connected seamlessly. The research proposes an opportunity-driven redesign path that cooperates the training and opportunity searching, which will be applied in future training classes to make more and more engineers to follow.展开更多
文摘Climate is a major driver of vector proliferation and arbovirus transmission, with temperature being a primary focus of research. Unlike other mosquito-borne diseases, Zika virus transmission involves both sexual transmission between humans and environmental transmission pathways, a characteristic largely overlooked in existing studies. This paper develops a temperature-dependent transmission model based on the unique transmission characteristics of the Zika virus. We estimated the historical transmission of Zika virus in Brazil using a temperature-dependent basic reproduction number to assess the impact of climate change on Zika virus spread in the region. Results indicate that the temperature range for Zika virus outbreaks is between 23.34˚C and 33.99˚C, peaking at 3.2 at 29.4˚C. This range and peak temperature are approximately 1˚C lower than those found in models that do not consider environmental transmission pathways. By incorporating seasonal variations into the model and categorizing ten Brazilian cities into five climatic types based on temperature changes, we simulated historical and future daily average temperatures using the GFDL-ESM4 temperature model. We analyzed the control periods and virus risks across different regions and projected Zika virus transmission risk in Brazil under four Shared Socioeconomic Pathways (SSP126, SSP245, SSP370, and SSP585). The results suggest that under the SSP126 scenario, the control periods will extend by 2 - 3 months with rising temperatures. This study concludes by discussing the impact of temperature changes on control measures, emphasizing the importance of reducing adult mosquito populations through the Sterile Insect Technique (SIT) to mitigate future risks.
文摘Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.
文摘The present study is concentrated on the empirical studies on the circulation in the Tampa Bay by analyzing velocity data at the Skyway Bridge Station in the Tampa Bay. Analyses focus on three factors responsible for the circulation: tides, winds and buoyancy gradients. The analysis of the current data obtained at the Skyway Bridge Station shows these three components of the circulation: the tidal currents are nearly uniform with depth; a vigorous and persistent buoyancy-driven mean now is directed into the bay at this location with speed of about 6 -- 8 cm/s; and synoptic scale wind fluctuations result in similarly large current fluctuations with winds blowing into the bay causing currents to flow out of the bay, and the versa.
文摘Thermocapillary-and buoyancy-driven convection in open cavities with differentially heated endwalls is investigated by numerical solutions of the two- dimensional Navier-Stokes equations coupled with the energy equation. We studied the thermocapillary and buoyancy convection in the cavities, filled with low-Prandtl- number fluids, with two aspect-ratios A=1 and 4, Grashof number up to 10~5 and Reynolds number |Re|≤10~4. Our results show that thermocapillary can have a quite significant effect on the stability of a primarily buoyancy-driven flow, as well as on the flow structures and dynamic behavior for both additive effect (i.e., positive Re) and opposing effect (i.e., negative Re).
基金The State Oceanic Administration Foundation of China under contract No.200805029
文摘Ecological experiments were conducted to examine the effects of seawater containing elevated par- tial pressure of carbon dioxide (p CO2 800 × 10 -6 , 2 000 × 10 -6 , 5 000 × 10 -6 and 10 000 × 10 -6 ) on the survival and reproduction of female Acartia pacifica, Acartia spinicauda, Calanus sinicus and Centropages tenuiremis, which are the dominant copepods in the southern coastal waters of China. The results show that the effects of elevated p CO2 on the survival rates of copepods were species-specific. C. sinicus, which was a macro-copepod, had a higher survival rate (62.01%–71.96%) than the other three species (5.00%–26.67%) during the eight day exposure. The egg production rates of C. sinicus, A. spinicauda and C. tenuiremis were significantly inhibited by the increased p CO2 and the exposure time duration. There were significantly negative impacts on the egg hatching success of A. spinicauda and C. tenuiremis in the p CO2 2 000 × 10 -6 and 10 000 × 10 -6 groups, and, in addition, the exposure time had noticeably impacts on these rates too. This study indicates that the reproductive performances of copepods were sensitive to elevated p CO2 , and that the response of different copepod species to acidified seawater was different. Furthermore, the synergistic effects of seawater acidification and climate change or other pollutant stresses on organisms should be given more attention.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50835006 and 51005161)the Science & Technology Support Planning Foundation of Tianjin(Grant No. 09ZCKFGX03000)the Natural Science Foundation of Tianjin(Grant No. 09JCZDJC23400)
文摘PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
基金partially supported by the National Natural Science Foundation of China(61751306,61801208,61671233)the Jiangsu Science Foundation(BK20170650)+2 种基金the Postdoctoral Science Foundation of China(BX201700118,2017M621712)the Jiangsu Postdoctoral Science Foundation(1701118B)the Fundamental Research Funds for the Central Universities(021014380094)
文摘During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605126,51575150,91748109)
文摘Cable-driven parallel robots(CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several advantages, including larger workspaces, higher payload-to-weight ratio and lower manufacturing costs rather than rigid-link robots. In this paper, the history of the development of CDPRs is introduced and several successful latest application cases of CDPRs are presented. The theory development of CDPRs is introduced focusing on design, performance analysis and control theory. Research on CDPRs gains wide attention and is highly motivated by the modern engineering demand for large load capacity and workspace. A number of exciting advances in CDPRs are summarized in this paper since it is proposed in the 1980 s, which points to a fruitful future both in theory and application. In order to meet the increasing requirements of robot in different areas, future steps foresee more in-depth research and extension applications of CDPRs including intelligent control, composite materials, integrated and reconfigurable design.
基金supported by National 973 Key Basic Research Development Program (No.2007CB209608)National 863 High Technology Research Development Program (No. 2007AA06Z218)
文摘Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction.
基金This study was supported by the Youth Ocean Sience Funds of State Oceanic Administration under contract No. 97301.
文摘The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51475319 and 51722508)the National Key R&D Plan(Grant No.2016YFC0301100)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology
文摘Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
基金supported by the National Natural Science Foundation of China(61773087)the National Key Research and Development Program of China(2018YFB1601500)High-tech Ship Research Project of Ministry of Industry and Information Technology-Research of Intelligent Ship Testing and Verifacation([2018]473)
文摘Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51290293,51520105006)National Key R&D Program of China(Grant No.2017YFC0110401)
文摘Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.
基金funding from the EU Smarter project(PEOPLE-2013-IAPP-610675)
文摘To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions of the machine and tooling during machining processes,the relevant diagnosis systems currently adopted in industries are incompetent.To address this issue,this paper presents a novel data-driven diagnosis system for anomalies.In this system,power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis.To facilitate the analysis,preprocessing mechanisms have been designed to de-noise,normalize,and align the monitored data.Important features are extracted from the monitored data and thresholds are defined to identify anomalies.Considering the dynamic conditions of the machine and tooling during machining processes,the thresholds used to identify anomalies can vary.Based on historical data,the values of thresholds are optimized using a fruit fly optimization(FFO)algorithm to achieve more accurate detection.Practical case studies were used to validate the system,thereby demonstrating the potential and effectiveness of the system for industrial applications.
基金supported by the National Natural Science Foundation of China(Grants No.51739002 and 51479064)the World-Class Universities(Disciplines)and Characteristic Development Guidance Funds for the Central Universitiesthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions(Grant No.PPZY2015A051)
文摘In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.
文摘Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic propulsion of light-driven Ti O_2–Au Janus micromotors in aqueous dye solutions. Compared to the velocities of these micromotors in pure water, 1.7, 1.5, and 1.4 times accelerated motions were observed for them in aqueous solutions of methyl blue(10-5g L^(-1)), cresol red(10^(-4)g L^(-1)),and methyl orange(10^(-4)g L^(-1)), respectively. We determined that the micromotor speed changes depending on thetype of dyes, due to variations in their photodegradation rates. In addition, following the deposition of a paramagnetic Ni layer between the Au and Ti O_2 layers, the micromotor can be precisely navigated under an external magnetic field. Such magnetic micromotors not only facilitate the recycling of micromotors, but also allow reusability in the context of dye detection and degradation.In general, such photocatalytic micro-/nanomotors provide considerable potential for the rapid detection and ‘‘on-thefly'' degradation of dye pollutants in aqueous environments.
基金The National Natural Science Foundations of China under contract Nos 41576013 and 11362012the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail the influence of wind-driven waves and ocean spray on the momentum transport in a marine atmosphere boundary layer(MABL). An analytic solution of the modified Ekman model can be obtained. The effect of the wave-induced stress is evaluated by a wind wave spectrum and a wave growth rate. It is found that the wave-induced stress and spray stress have a small impact compared with the turbulent stress on the drag coefficient and the wind profiles for low-to-medium wind speed. The spray contribution to the surface stress should be much more taken into account than the winddriven waves when the wind speed reaches above 25 m/s through the action of a "spray stress". As a result, the drag coefficient starts to decrease with increasing wind speed for high wind speed. The effects of the winddriven waves and spray droplets on the near-surface wind profiles are illustrated for different wave ages, which indicates that the production of the spray droplets leads the wind velocity to increase in the MABL. The solutions are also compared with the existed field observational data. Illustrative examples and the comparisons between field observations and the theoretical solutions demonstrate that the spray stress has more significant effect on the marine atmosphere boundary layer in the condition of the high wind speed compared with wave-induced stress.
基金Project supported by the National Natural Science Foundation of China (No.10771032)the Natural Science Foundation of Jiangsu Province (BK2006088)
文摘The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675159,51305123)
文摘Many design engineers in cross-domain industries have attended training classes of TRIZ to improve their innovative abilities in China. Most of them are successful, but others are not. So the latest target of the trainers is to improve the training process used now in industry in China and to make the engineers to understand the basic principles of TRIZ better. Based on the mass-engineer-oriented training model(MEOTM) and mechanical engineers’ design cases, a relationship between managing activities about the opportunities for innovation and the training process is set up. It is shown that the inventive problems come first from opportunity searching for engineers. A training and gate system for evaluation is developed to involve the managing activities of the companies in the training process. Then comparison between the general analogous process and the application of TRIZ is made, which shows the advantages and depth principles of TRIZ for the engineers to apply them confidently. Lastly a new process is formed in which opportunity searching, engineers training, inventive problems identifying and solving,and three redesign paths are connected seamlessly. The research proposes an opportunity-driven redesign path that cooperates the training and opportunity searching, which will be applied in future training classes to make more and more engineers to follow.