TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro...TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.展开更多
Laser cladding experiments were done on a 5-kW continuous wave CO2 laser to synthesize TiC and TiB rein- fowed titanium matrix composite coatings on Ti-6AI-4V alloy with a mixture of Ti and B4C precursor powder. The t...Laser cladding experiments were done on a 5-kW continuous wave CO2 laser to synthesize TiC and TiB rein- fowed titanium matrix composite coatings on Ti-6AI-4V alloy with a mixture of Ti and B4C precursor powder. The ther- modynamics of the reactions were calculated and analyzed. The microstructure and phase evolution of TiB and TiC com- posites were investigated. The results showed that the chemical reaction between Ti and B4C would release much heat, and these compounds, TiC, TiB, and small amount of TiB2, can be formed on the surface of Ti-6AI-4V alloy if the supplied en- ergy is sufficient to excite the reaction among the initial products. A good metallurgical bond between the coating and the substrate can be achieved. The microhardness of coating was irregular and the maximum value was approximately HV600.展开更多
Tubes of 3.5 vol,% TiB whiskers reinforced Ti6Al4V matrix composites (TiBw/Ti6Al4V) were successfully fabricated by a two-step hot-hydrostatic extrusion process: (3 extrusion at 1100 ℃ and subsequent near-β extr...Tubes of 3.5 vol,% TiB whiskers reinforced Ti6Al4V matrix composites (TiBw/Ti6Al4V) were successfully fabricated by a two-step hot-hydrostatic extrusion process: (3 extrusion at 1100 ℃ and subsequent near-β extrusion at 950℃. The dimensions of tubes were about 7 mm in diameter and 2 mm in thickness. A refined basket-weave structure in Ti6Al4V matrix was achieved at ambient temperature after the extrusion process. Besides, the original network structure formed by TiB whiskers synthesized was broken, while the TiB whiskers were preferentially aligned in the extruding direction. Meanwhile, a fibrous texture was evolved finally, resulting from partial dynamic recrystallization during the β extrusion and the involvement of α phase during the near-β extrusion. The tensile and compressive tests results showed that both the strength and ductility of the tubes were significantly improved. In particular, the tubes exhibited good mechanical properties at elevated temperatures.展开更多
基金Prject(20111D0503200316)supported by the Programme for Peking Excellent Talents in University,ChinaProject(613135)supported by 973 Defence Plan of China
文摘TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.
基金financially supported by the National "973" Research Project (No. 2006CB605206-1)
文摘Laser cladding experiments were done on a 5-kW continuous wave CO2 laser to synthesize TiC and TiB rein- fowed titanium matrix composite coatings on Ti-6AI-4V alloy with a mixture of Ti and B4C precursor powder. The ther- modynamics of the reactions were calculated and analyzed. The microstructure and phase evolution of TiB and TiC com- posites were investigated. The results showed that the chemical reaction between Ti and B4C would release much heat, and these compounds, TiC, TiB, and small amount of TiB2, can be formed on the surface of Ti-6AI-4V alloy if the supplied en- ergy is sufficient to excite the reaction among the initial products. A good metallurgical bond between the coating and the substrate can be achieved. The microhardness of coating was irregular and the maximum value was approximately HV600.
基金financially supported by the National HighTech Research and Development Program of China("863 Program",No.2013AA031202)
文摘Tubes of 3.5 vol,% TiB whiskers reinforced Ti6Al4V matrix composites (TiBw/Ti6Al4V) were successfully fabricated by a two-step hot-hydrostatic extrusion process: (3 extrusion at 1100 ℃ and subsequent near-β extrusion at 950℃. The dimensions of tubes were about 7 mm in diameter and 2 mm in thickness. A refined basket-weave structure in Ti6Al4V matrix was achieved at ambient temperature after the extrusion process. Besides, the original network structure formed by TiB whiskers synthesized was broken, while the TiB whiskers were preferentially aligned in the extruding direction. Meanwhile, a fibrous texture was evolved finally, resulting from partial dynamic recrystallization during the β extrusion and the involvement of α phase during the near-β extrusion. The tensile and compressive tests results showed that both the strength and ductility of the tubes were significantly improved. In particular, the tubes exhibited good mechanical properties at elevated temperatures.