Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all questio...Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness.展开更多
在实现e^(N)方法时,需要搜索流场中的不稳定波,并大量求解当地边界层的稳定性问题,因此为高效求解当地边界层的不稳定波参数,提出了一种基于神经网络的线性稳定性分析方法(neural network-based linear stability analysis,NNLSA)。采...在实现e^(N)方法时,需要搜索流场中的不稳定波,并大量求解当地边界层的稳定性问题,因此为高效求解当地边界层的不稳定波参数,提出了一种基于神经网络的线性稳定性分析方法(neural network-based linear stability analysis,NNLSA)。采用卷积神经网络给出最不稳定波频率ω、展向波数β、流向波数αr和增长率σmax的初值对,再通过迭代法计算失稳扰动波的实际空间失稳波数和增长率。使用平板数据集训练神经网络模型,并利用平板和尖锥算例对NNLSA方法的准确性和计算效率进行验证。结果表明:神经网络部分对不稳定波参数的预测结果与线性稳定性理论的计算结果吻合较好;LSA部分可根据神经网络提供的预测值,通过迭代法找到最不稳定波;NN-LSA方法的求解效率较高,求解时间比全局搜索方法约低20~50倍,大大减小了人为因素在计算过程中的影响。本文提出的NN-LSA方法可以实现自动分析边界层流动的线性稳定性,具有一定的应用潜力。展开更多
文摘传统的文本谱聚类需要的文本相似矩阵依赖于向量空间模型,忽略了词与词之间的语义关系,存在词频维数过高、计算代价高等问题。针对这些问题,提出了一种基于潜在语义分析(latent semantic analysis,LSA)的文本相似矩阵构造方法,利用奇异值分解(singular value decomposition,SVD)降维,在低维的语义空间表示文本,以此来提高同类文本间的语义相似度,并进行了相关对比实验。在该实验中,改进方法的聚类效果要好于传统的方法,从而验证了改进方法的有效性和可行性。
基金Project (No. 2002AA119050) supported by the National Hi-TechResearch and Development Program (863) of China
文摘Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness.
文摘在实现e^(N)方法时,需要搜索流场中的不稳定波,并大量求解当地边界层的稳定性问题,因此为高效求解当地边界层的不稳定波参数,提出了一种基于神经网络的线性稳定性分析方法(neural network-based linear stability analysis,NNLSA)。采用卷积神经网络给出最不稳定波频率ω、展向波数β、流向波数αr和增长率σmax的初值对,再通过迭代法计算失稳扰动波的实际空间失稳波数和增长率。使用平板数据集训练神经网络模型,并利用平板和尖锥算例对NNLSA方法的准确性和计算效率进行验证。结果表明:神经网络部分对不稳定波参数的预测结果与线性稳定性理论的计算结果吻合较好;LSA部分可根据神经网络提供的预测值,通过迭代法找到最不稳定波;NN-LSA方法的求解效率较高,求解时间比全局搜索方法约低20~50倍,大大减小了人为因素在计算过程中的影响。本文提出的NN-LSA方法可以实现自动分析边界层流动的线性稳定性,具有一定的应用潜力。