现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定...现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。展开更多
文摘现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。