The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano ...The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano particles on flow stress and dynamic recrystallization of composite was discussed.The results showed that the micro-nano Ti_(2)AlC particles included strengthening and softening effects during hot deformation,resulting in the fact that the Ti_(2)AlC/TiAl composite exhibited a higher flow stress and more sufficient dynamic recrystallization.The strengthening effect was mainly attributed to the Ti_(2)AlC particles induced refinement strengthening and hindered dislocation motion at the initial stage.Moreover,the precipitation of nano-TiCr2 particles induced by stress concentration during hot deformation also contributed to higher flow stress via impeding dislocation motion.Meanwhile,the refined microstructure and dislocation pile-up caused by micro-nano particles during deformation provided more nucleation sites for dynamic recrystallization,which significantly promoted the dynamic recrystallization of the second stage.The present results reveal that the Ti_(2)AlC/TiAl composite exhibited excellent hot workability,which is important to promote the application of TiAl alloys.展开更多
基金supported by the National Natural Science Foundation of China(No.52001262)the Natural Science Foundation of Zhejiang Province,China(No.LZY22E010001)the Natural Science Foundation of Shaanxi Province,China(No.2020JC-50)。
文摘The in-situ micro-nano Ti_(2)AlC particles reinforced TiAl(Ti_(2)AlC/TiAl)composite was fabricated using spark plasma sintering.The hot workability of Ti_(2)AlC/TiAl composite was studied,and the effect of micro-nano particles on flow stress and dynamic recrystallization of composite was discussed.The results showed that the micro-nano Ti_(2)AlC particles included strengthening and softening effects during hot deformation,resulting in the fact that the Ti_(2)AlC/TiAl composite exhibited a higher flow stress and more sufficient dynamic recrystallization.The strengthening effect was mainly attributed to the Ti_(2)AlC particles induced refinement strengthening and hindered dislocation motion at the initial stage.Moreover,the precipitation of nano-TiCr2 particles induced by stress concentration during hot deformation also contributed to higher flow stress via impeding dislocation motion.Meanwhile,the refined microstructure and dislocation pile-up caused by micro-nano particles during deformation provided more nucleation sites for dynamic recrystallization,which significantly promoted the dynamic recrystallization of the second stage.The present results reveal that the Ti_(2)AlC/TiAl composite exhibited excellent hot workability,which is important to promote the application of TiAl alloys.