Ahn To develop a high resolution HPLC method for the determination of ondansetron in human plasma and to study the pharmacokinetics of ondansetron in orally disintegrating tablets. Methods HPLC determination involved ...Ahn To develop a high resolution HPLC method for the determination of ondansetron in human plasma and to study the pharmacokinetics of ondansetron in orally disintegrating tablets. Methods HPLC determination involved liquid-liquid extraction, separation on a CN column and ultraviolet detection at 310 ran with granisetron as an internal standard. Pharmacokinetics and bioequivalence of ondansetron in orally disintegrating tablets by direct compression and conventional 8 mg tablets were evaluated and compared in 20 healthy human male volunteers after a single oral dose in a randomized cross-over study. Results The limit of quantification was 0.25 ng· mL^-1. The recovery was about 85 % or over for ondan setron and about 90% for internal standard. Linearity was good within the concentration range of 0.5 - 50 ng·mL^-1 with r^2 ranging from 0.997 1 to 0.999 9. Intra- and inter-assay coefficients of variation ranged from 1.78% to 2.38% and 3.88% -5.19%, respectively. Accuracies for spiked concentrations of 2.0, 10.0, and 30.0 ng·mL^-1 were 104.7% ±4.4%, 102.2% ± 1.1%, and99.51% ±2.34%, respectively. Pharmacokinetic parameters of AUCo-t, AUCo-∞ , Cmax, Tmax, and T1/2 were 230.2 ± 78.0 ng·h·L^-1 , 265.2± 101.5 ng·h·mL^-1, 35.67 ± 8.94 ng·mL^-l, 1.51 ±0.79 h, and 5.00± 1.41 h for orally disintegrating tablets, respectively. The analysis of variance did not show any significant difference between orally disintegrating tablets and conventional tablets, and 90% confidence intervals fell within the acceptable range for bioequivalence. Conclusion High resolution HPLC method has been set up and applied in pharmacokinetic evaluation of ondansetron in orally disintegrating tablets.展开更多
AIM: To elucidate the differences in somatic, psycho-logical and biochemical pattern between the subtypes of irritable bowel syndrome (IBS). METHODS: Eighty IBS patients, 30 diarrhoea pre-dominant (D-IBS), 16 constipa...AIM: To elucidate the differences in somatic, psycho-logical and biochemical pattern between the subtypes of irritable bowel syndrome (IBS). METHODS: Eighty IBS patients, 30 diarrhoea pre-dominant (D-IBS), 16 constipation predominant (C-IBS) and 34 alternating IBS (A-IBS) underwent physi-otherapeutic examinations for dysfunctions in body movements and awareness and were compared to an apparently healthy control group (AHC). All groups an-swered questionnaires for gastrointestinal and psycho-logical symptoms. Biochemical variables were analysed in blood. RESULTS: The D-IBS group showed less body aware-ness, less psychological symptoms, a more normal sense of coherence and psychosocial rating as well as higher C-peptide values. C-IBS had a higher degree of body dysfunction and psychological symptoms, as well as the lowest sense of coherence compared to controls and D-IBS. They also demonstrated the most elevated prolactin levels. A-IBS had the lowest degree of body disturbance, deteriorated quality of life and affected bi-ochemical pattern. All subtypes had higher pain scores compared to controls. In addition they all had signifi -cantly increased triglycerides and elevated morning cortisol levels, however, without statistical signifi cance compared with the controls.CONCLUSION: IBS subtypes showed different pro-files in body awareness, somatic and psychological symptoms and in biochemical variables. D-IBS differed compared to the other groups by lowered body aware-ness, less psychological symptoms and a higher sense of coherence and elevated C-peptide values. C-IBS and A-IBS subtypes suffered more from depression and anxiety, associated with a lower quality of life. These differences may be important and will be taken into account in our treatment of these patients.展开更多
Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics an...Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate(FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 k Da. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.展开更多
Herbs of activating blood circulation to remove blood stasis (ABCRBS) are a category of over 10% in the modern Chinese Pharmacopoeia. A new borderline discipline, biomechanopharmacology, is shaping by the efforts of a...Herbs of activating blood circulation to remove blood stasis (ABCRBS) are a category of over 10% in the modern Chinese Pharmacopoeia. A new borderline discipline, biomechanopharmacology, is shaping by the efforts of applying biomechanics in pharmacological studies of ABCRBS herbs. Biomechanics is involved in modeling of blood stasis syndrome (BSS) with mechanical force induced injury and model evaluation by shear stress monitoring for blood coagulation. Investigations showed that tetramethylpyrazine (TMP) contained in Ligusticum chuanxiong Hort and diallyl trisulfide (DT) extracted from garlic demonstrated inhibiting characteristics on vWF mediated platelet activation and thrombus formation occurring under high shear rates. The effect of TMP on shear-induced platelet aggregation might be due to inhibition of calcium channel activity since it showed significant inhibition on intracellular level of calcium demonstrated by laser confocal microscope. The combined effects of TMP and shear stress on rat cerebral microvascular endothelial cell (rCMEC) were investigated by various doses of TMP incorporated with different levels of shear stress generated by a rotational cone-plate rheometer. The results indicated that apoptosis of rCMECs could be restrained by a combination of medial level of shear stress with a suitable dose of TMP. To study the influences of shear stress, pressure and TMP on angiogenesis of vascular endothelial cell, cultured rCMEC was pretreated in a flow chamber with independent adjustment for levels of shear stress and pressure, and then 3D cultured on Matrigel. The results indicate that combined effects of shear stress, pressure and TMP may influence angiogenesis significantly. We believe that research on interactions among blood shear stress, secretion of endothelial cell, and pharmacodynamics will be an interesting area of biomechanopharmacology. Herbs of ABCRBS and their extracts for protecting endothelial cells to maintain their normal functions are expected.展开更多
Femtoscience offers a unique way to understand the dynamics in physics, chemistry and biology. This subject focuses on the process happening at femto-to pico-second time scale by femtosecond optical methods. Widely us...Femtoscience offers a unique way to understand the dynamics in physics, chemistry and biology. This subject focuses on the process happening at femto-to pico-second time scale by femtosecond optical methods. Widely used in chemistry it reveals chemical reactions, including bond breaking, forming, and stretching, which happens at an ultrafast time scale. Femtoscience is also important in the biological system, for example, light harvesting system and vision system. Femtoscience in physics is also widely used, but it is not studied in this paper. Instead, we report new advances in femtochemistry and femtobiology, including structural dynamics, coherent control, enzyme function dynamics and hydration in the protein system. We also introduce attosecond science, focusing on electron dynamics at an extreme short time scale.展开更多
Total paeony glycoside(TPG) is obtained from Radix Paeoniae Rubra with a variety of bioactivities. However, the low solubility and bioavailability limit its application. The present study aimed to develop TPG nanocr...Total paeony glycoside(TPG) is obtained from Radix Paeoniae Rubra with a variety of bioactivities. However, the low solubility and bioavailability limit its application. The present study aimed to develop TPG nanocrystals to increase the dissolution and then improve the oral bioavailability. TPG nanocrystals were prepared via precipitation and high-pressure homogenization method. The physical-chemical properties of the optimal TPG nanocrystals in terms of particle size, zeta potential, morphology and crystallinity were evaluated. The results showed that TPG nanocrystals had a mean particle size of(210.2±2.5) nm, a polydispersity index of 0.191±0.033 and a zeta potential of(–22.4±1.2) mV. The result of differential scanning calorimetry showed that the nanocrystals were still in crystalline state after the preparation procedure. Transmission electron microscopy(TEM) results showed that the nanosuspension was in spherical shape. The pharmacokinetics of TPG nanocrystals for rats was investigated by liquid chromatography-tandem mass spectroscopy(LC-MS/MS). Compared with the TPG coarse suspension, TPG nanocrystals exhibited significant increase in AUC0–∞(approximately 1.85-fold). Taken together, TPG nanocrystals could be used as a promising drug delivery system due to the enhanced oral bioavailability of TPG.展开更多
Objective: To investigate the biomechanical effect of major extremity vessels to choose appropriate repair methods for vascular injuries of the extremities. Methods : The data of 385 patients (337 males and 48 fem...Objective: To investigate the biomechanical effect of major extremity vessels to choose appropriate repair methods for vascular injuries of the extremities. Methods : The data of 385 patients (337 males and 48 females, aged 18-71 years, mean = 32.6 years ) including 403 injured vessels, who suffered from vascular injuries of the extremities and were treated in our hospital from October 1960 to August 2005, were studied retrospectively in this article. We compared the results of different repair methods for the defect of vessels and evaluated different injured vessels for repairing arterial injuries with anastomosis and venous graft, respectively. Results: A significant difference was found between the defect lengths of the arteries repaired with anastomosis and venous graft ( P 〈 0. 0001 ). The upper limits of the confidence interval in the defect lengths of the brachial artery, the femoral artery and the popliteal artery were 3.43 cm, 2. 38 cm and 2. 42 cm, respectively, when repaired with anastomosis. The lower limits were 2.16 cm, 2.16 cm and 1. 63 cm, respectively, when repaired with venous graft. The defect length of each artery repaired with venous graft had linear correlation with the graft length. Conclusion - Because of the longitudinal biomechanical difference of different options of repair arterial injuries. human peripheral vessels, are necessary for different arterial injuries.展开更多
Objective:To observe the therapeutic efficacy of sinew-bone balancing manipulation plus exercise therapy in treating postures of primary school students with upper crossed syndrome(UCS).Methods:Sixty pupils with UCS w...Objective:To observe the therapeutic efficacy of sinew-bone balancing manipulation plus exercise therapy in treating postures of primary school students with upper crossed syndrome(UCS).Methods:Sixty pupils with UCS were divided into an exercise group and a combination group using the random number table method,with 30 cases in each group.The combination group received treatments of sinew-bone balancing manipulation plus exercise therapy,while the exercise group received exercise therapy alone.The two groups received interventions once every other day,for a total of 1 month.The sagittal static posture assessment total score,forward head angle(FHA)and forward shoulder angle(FSA)were compared before and after treatment;the sagittal static assessment total score,FHA and FSA were compared between the exercise group and the combination group.Results:Before treatment,there were no significant differences comparing the sagittal static posture assessment total score,FHA and FSA between the two groups(all P>0.05);after treatment,the sagittal static posture assessment total score,FHA and FSA decreased in the two groups,with intra-group statistical significance(all P<0.01),and were lower in the combination group than in the exercise group,with inter-group statistical significance(all P<0.01).Conclusion:Sinew-bone balancing manipulation plus exercise therapy can notably improve the FHA and FSA and reduce the sagittal static posture total score in pupils with UCS,so as to correct the bad postures and adjust UCS physique.It can produce more significant efficacy compared with exercise therapy alone.展开更多
Porous Ti-lOMo alloys were fabricated by powder metallurgy using a space-holder method. The pore characteristics, m icrostructure, mechanical properties, in vitro biocompatibility, and in vivo osseointegration of the ...Porous Ti-lOMo alloys were fabricated by powder metallurgy using a space-holder method. The pore characteristics, m icrostructure, mechanical properties, in vitro biocompatibility, and in vivo osseointegration of the fabricated alloys were systematically investigated. The results show that with different weight ratios of the space-holder (NH4- HC03) added, all of the porous Ti-10Mo alloys sintered at 1,300℃ exhibited a typical W idmanstatten microstructure. The porosity and average pore size of the porous structures can be controlled in the range of 50.8%-66.9% and 70.1 -381.4μm , respectively. The Ti-10Mo alloy with 63.4% porosity exhibited the most suitable mechanical properties for implant applications with an elastic modulus of 2.9 GPa and a compressive yield strength of 127.5 MPa. In vitro9 the alloyconditioned medium showed no deleterious effect on the cell proliferation. The cell viability in this medium was higher than that of the reference group, suggesting non-toxicity and good biological characteristics of the alloy specimens. In vivo, after eight weeks* implantation, new bone tissue formed surrounding the alloy implants, and no noticeable inflammation was observed at the implantation site. The bone bonding strength of the porous Ti-10Mo alloy increased over time from 46.6N at two weeks to 176.4 N at eight weeks. Suitable mechanical properties together with excellent biocompatibility in vitro and osteointegration in vivo make the porous Ti-10Mo fabricated by powder metallurgy an attractive orthopedic implant alloy.展开更多
Mefunidone (MFD), a pirfenidone analogue, has been suggested as a novel anti-fibrotic agent in preclinical research stage. In this work, we developed a sensitive and specified HPLC-UV method and validated it for the...Mefunidone (MFD), a pirfenidone analogue, has been suggested as a novel anti-fibrotic agent in preclinical research stage. In this work, we developed a sensitive and specified HPLC-UV method and validated it for the determination of MFD in rat plasma. A cost-effective protein precipitation method using methanol was used to process the plasma samples, and pirfenidone was employed as the internal standard (IS). Chromatographic separation was performed on an Agilent ZORBAX SB-Aq column (4.6 mm 250 mm, 5 μm) with a mobile phase consisting of 10 mM ammonium formate solution (pH 3.0, adjusted by 1.5%o formic acid)-acetonitrile-methanol (60:23:17, v/v/v) at a flow rate of 1.0 mL/min, and the samples were monitored at an ultraviolet wavelength of 245 nm. The retention times of MFD and IS were 5.5 and 7.8 min, respectively. The calibration curve was linear (r2 = 0.9997) between 0.1 and 20 pg/mL. The intra- and inter-day precisions were within 8.6%, and the bias of intra- and inter-accuracies of the method was between -4.2% and 6.5%. The method was successfully applied to pharmacokinetic study of MFD after i.g. and i.v. administration in rats. The elimination half-life was (3.41±0.81) h for i.g. administration and (2.26±0.87) h for i.v. administration. The absolute bioavailability of MFD in rat was 79.1%.展开更多
文摘Ahn To develop a high resolution HPLC method for the determination of ondansetron in human plasma and to study the pharmacokinetics of ondansetron in orally disintegrating tablets. Methods HPLC determination involved liquid-liquid extraction, separation on a CN column and ultraviolet detection at 310 ran with granisetron as an internal standard. Pharmacokinetics and bioequivalence of ondansetron in orally disintegrating tablets by direct compression and conventional 8 mg tablets were evaluated and compared in 20 healthy human male volunteers after a single oral dose in a randomized cross-over study. Results The limit of quantification was 0.25 ng· mL^-1. The recovery was about 85 % or over for ondan setron and about 90% for internal standard. Linearity was good within the concentration range of 0.5 - 50 ng·mL^-1 with r^2 ranging from 0.997 1 to 0.999 9. Intra- and inter-assay coefficients of variation ranged from 1.78% to 2.38% and 3.88% -5.19%, respectively. Accuracies for spiked concentrations of 2.0, 10.0, and 30.0 ng·mL^-1 were 104.7% ±4.4%, 102.2% ± 1.1%, and99.51% ±2.34%, respectively. Pharmacokinetic parameters of AUCo-t, AUCo-∞ , Cmax, Tmax, and T1/2 were 230.2 ± 78.0 ng·h·L^-1 , 265.2± 101.5 ng·h·mL^-1, 35.67 ± 8.94 ng·mL^-l, 1.51 ±0.79 h, and 5.00± 1.41 h for orally disintegrating tablets, respectively. The analysis of variance did not show any significant difference between orally disintegrating tablets and conventional tablets, and 90% confidence intervals fell within the acceptable range for bioequivalence. Conclusion High resolution HPLC method has been set up and applied in pharmacokinetic evaluation of ondansetron in orally disintegrating tablets.
基金Grants from the University of Gothenburg, Sweden
文摘AIM: To elucidate the differences in somatic, psycho-logical and biochemical pattern between the subtypes of irritable bowel syndrome (IBS). METHODS: Eighty IBS patients, 30 diarrhoea pre-dominant (D-IBS), 16 constipation predominant (C-IBS) and 34 alternating IBS (A-IBS) underwent physi-otherapeutic examinations for dysfunctions in body movements and awareness and were compared to an apparently healthy control group (AHC). All groups an-swered questionnaires for gastrointestinal and psycho-logical symptoms. Biochemical variables were analysed in blood. RESULTS: The D-IBS group showed less body aware-ness, less psychological symptoms, a more normal sense of coherence and psychosocial rating as well as higher C-peptide values. C-IBS had a higher degree of body dysfunction and psychological symptoms, as well as the lowest sense of coherence compared to controls and D-IBS. They also demonstrated the most elevated prolactin levels. A-IBS had the lowest degree of body disturbance, deteriorated quality of life and affected bi-ochemical pattern. All subtypes had higher pain scores compared to controls. In addition they all had signifi -cantly increased triglycerides and elevated morning cortisol levels, however, without statistical signifi cance compared with the controls.CONCLUSION: IBS subtypes showed different pro-files in body awareness, somatic and psychological symptoms and in biochemical variables. D-IBS differed compared to the other groups by lowered body aware-ness, less psychological symptoms and a higher sense of coherence and elevated C-peptide values. C-IBS and A-IBS subtypes suffered more from depression and anxiety, associated with a lower quality of life. These differences may be important and will be taken into account in our treatment of these patients.
基金supported funancialy by Qingdao Bio-temed Biomaterial Co.,Ltd.the National ‘Twelfth Five-Year’ Support Plan for Science&Technology of Chinia(2012BAI18B06)
文摘Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate(FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 k Da. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.
基金The project is supported by NSFC(90209055,10272116).The authors are in—debted to Bin Li,Ligong Jiao,Dong Han,Zhigang Ouyang,Ruomei Qi,Yun You and Wen Li for their contributions tO the experimental researches
文摘Herbs of activating blood circulation to remove blood stasis (ABCRBS) are a category of over 10% in the modern Chinese Pharmacopoeia. A new borderline discipline, biomechanopharmacology, is shaping by the efforts of applying biomechanics in pharmacological studies of ABCRBS herbs. Biomechanics is involved in modeling of blood stasis syndrome (BSS) with mechanical force induced injury and model evaluation by shear stress monitoring for blood coagulation. Investigations showed that tetramethylpyrazine (TMP) contained in Ligusticum chuanxiong Hort and diallyl trisulfide (DT) extracted from garlic demonstrated inhibiting characteristics on vWF mediated platelet activation and thrombus formation occurring under high shear rates. The effect of TMP on shear-induced platelet aggregation might be due to inhibition of calcium channel activity since it showed significant inhibition on intracellular level of calcium demonstrated by laser confocal microscope. The combined effects of TMP and shear stress on rat cerebral microvascular endothelial cell (rCMEC) were investigated by various doses of TMP incorporated with different levels of shear stress generated by a rotational cone-plate rheometer. The results indicated that apoptosis of rCMECs could be restrained by a combination of medial level of shear stress with a suitable dose of TMP. To study the influences of shear stress, pressure and TMP on angiogenesis of vascular endothelial cell, cultured rCMEC was pretreated in a flow chamber with independent adjustment for levels of shear stress and pressure, and then 3D cultured on Matrigel. The results indicate that combined effects of shear stress, pressure and TMP may influence angiogenesis significantly. We believe that research on interactions among blood shear stress, secretion of endothelial cell, and pharmacodynamics will be an interesting area of biomechanopharmacology. Herbs of ABCRBS and their extracts for protecting endothelial cells to maintain their normal functions are expected.
基金supported by the National Natural Science Foundation of China (Grant Nos.11074016,60878019,10821062,10934001 and 10828407)the National Basic Research Program of China (Grant No.2007CB307001)
文摘Femtoscience offers a unique way to understand the dynamics in physics, chemistry and biology. This subject focuses on the process happening at femto-to pico-second time scale by femtosecond optical methods. Widely used in chemistry it reveals chemical reactions, including bond breaking, forming, and stretching, which happens at an ultrafast time scale. Femtoscience is also important in the biological system, for example, light harvesting system and vision system. Femtoscience in physics is also widely used, but it is not studied in this paper. Instead, we report new advances in femtochemistry and femtobiology, including structural dynamics, coherent control, enzyme function dynamics and hydration in the protein system. We also introduce attosecond science, focusing on electron dynamics at an extreme short time scale.
基金Innovation Team Project(Grant No.LT2015011)from the Education Department of Liaoning ProvinceImportant Sci entific and Technical Achievements Transformation Project(Gr ant No.Z17-5-078)+1 种基金Applied Basic Research Project(Grant No.F16205144)of Science and Technology Bureau of Shenyangthe Liaoning Provincial Education Department Project of China(Grant No.L2015192)
文摘Total paeony glycoside(TPG) is obtained from Radix Paeoniae Rubra with a variety of bioactivities. However, the low solubility and bioavailability limit its application. The present study aimed to develop TPG nanocrystals to increase the dissolution and then improve the oral bioavailability. TPG nanocrystals were prepared via precipitation and high-pressure homogenization method. The physical-chemical properties of the optimal TPG nanocrystals in terms of particle size, zeta potential, morphology and crystallinity were evaluated. The results showed that TPG nanocrystals had a mean particle size of(210.2±2.5) nm, a polydispersity index of 0.191±0.033 and a zeta potential of(–22.4±1.2) mV. The result of differential scanning calorimetry showed that the nanocrystals were still in crystalline state after the preparation procedure. Transmission electron microscopy(TEM) results showed that the nanosuspension was in spherical shape. The pharmacokinetics of TPG nanocrystals for rats was investigated by liquid chromatography-tandem mass spectroscopy(LC-MS/MS). Compared with the TPG coarse suspension, TPG nanocrystals exhibited significant increase in AUC0–∞(approximately 1.85-fold). Taken together, TPG nanocrystals could be used as a promising drug delivery system due to the enhanced oral bioavailability of TPG.
文摘Objective: To investigate the biomechanical effect of major extremity vessels to choose appropriate repair methods for vascular injuries of the extremities. Methods : The data of 385 patients (337 males and 48 females, aged 18-71 years, mean = 32.6 years ) including 403 injured vessels, who suffered from vascular injuries of the extremities and were treated in our hospital from October 1960 to August 2005, were studied retrospectively in this article. We compared the results of different repair methods for the defect of vessels and evaluated different injured vessels for repairing arterial injuries with anastomosis and venous graft, respectively. Results: A significant difference was found between the defect lengths of the arteries repaired with anastomosis and venous graft ( P 〈 0. 0001 ). The upper limits of the confidence interval in the defect lengths of the brachial artery, the femoral artery and the popliteal artery were 3.43 cm, 2. 38 cm and 2. 42 cm, respectively, when repaired with anastomosis. The lower limits were 2.16 cm, 2.16 cm and 1. 63 cm, respectively, when repaired with venous graft. The defect length of each artery repaired with venous graft had linear correlation with the graft length. Conclusion - Because of the longitudinal biomechanical difference of different options of repair arterial injuries. human peripheral vessels, are necessary for different arterial injuries.
文摘Objective:To observe the therapeutic efficacy of sinew-bone balancing manipulation plus exercise therapy in treating postures of primary school students with upper crossed syndrome(UCS).Methods:Sixty pupils with UCS were divided into an exercise group and a combination group using the random number table method,with 30 cases in each group.The combination group received treatments of sinew-bone balancing manipulation plus exercise therapy,while the exercise group received exercise therapy alone.The two groups received interventions once every other day,for a total of 1 month.The sagittal static posture assessment total score,forward head angle(FHA)and forward shoulder angle(FSA)were compared before and after treatment;the sagittal static assessment total score,FHA and FSA were compared between the exercise group and the combination group.Results:Before treatment,there were no significant differences comparing the sagittal static posture assessment total score,FHA and FSA between the two groups(all P>0.05);after treatment,the sagittal static posture assessment total score,FHA and FSA decreased in the two groups,with intra-group statistical significance(all P<0.01),and were lower in the combination group than in the exercise group,with inter-group statistical significance(all P<0.01).Conclusion:Sinew-bone balancing manipulation plus exercise therapy can notably improve the FHA and FSA and reduce the sagittal static posture total score in pupils with UCS,so as to correct the bad postures and adjust UCS physique.It can produce more significant efficacy compared with exercise therapy alone.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-GF-17-B39)the financial support for this research by the National Health and Medical Research Council (NHMRC), Australia through project grant (GNT1087290)
文摘Porous Ti-lOMo alloys were fabricated by powder metallurgy using a space-holder method. The pore characteristics, m icrostructure, mechanical properties, in vitro biocompatibility, and in vivo osseointegration of the fabricated alloys were systematically investigated. The results show that with different weight ratios of the space-holder (NH4- HC03) added, all of the porous Ti-10Mo alloys sintered at 1,300℃ exhibited a typical W idmanstatten microstructure. The porosity and average pore size of the porous structures can be controlled in the range of 50.8%-66.9% and 70.1 -381.4μm , respectively. The Ti-10Mo alloy with 63.4% porosity exhibited the most suitable mechanical properties for implant applications with an elastic modulus of 2.9 GPa and a compressive yield strength of 127.5 MPa. In vitro9 the alloyconditioned medium showed no deleterious effect on the cell proliferation. The cell viability in this medium was higher than that of the reference group, suggesting non-toxicity and good biological characteristics of the alloy specimens. In vivo, after eight weeks* implantation, new bone tissue formed surrounding the alloy implants, and no noticeable inflammation was observed at the implantation site. The bone bonding strength of the porous Ti-10Mo alloy increased over time from 46.6N at two weeks to 176.4 N at eight weeks. Suitable mechanical properties together with excellent biocompatibility in vitro and osteointegration in vivo make the porous Ti-10Mo fabricated by powder metallurgy an attractive orthopedic implant alloy.
基金National Natural Science Foundation of China(Grant No.81573498)supported by Nanxin Pharmaceutical Co.,Ltd.(Guangdong,China)
文摘Mefunidone (MFD), a pirfenidone analogue, has been suggested as a novel anti-fibrotic agent in preclinical research stage. In this work, we developed a sensitive and specified HPLC-UV method and validated it for the determination of MFD in rat plasma. A cost-effective protein precipitation method using methanol was used to process the plasma samples, and pirfenidone was employed as the internal standard (IS). Chromatographic separation was performed on an Agilent ZORBAX SB-Aq column (4.6 mm 250 mm, 5 μm) with a mobile phase consisting of 10 mM ammonium formate solution (pH 3.0, adjusted by 1.5%o formic acid)-acetonitrile-methanol (60:23:17, v/v/v) at a flow rate of 1.0 mL/min, and the samples were monitored at an ultraviolet wavelength of 245 nm. The retention times of MFD and IS were 5.5 and 7.8 min, respectively. The calibration curve was linear (r2 = 0.9997) between 0.1 and 20 pg/mL. The intra- and inter-day precisions were within 8.6%, and the bias of intra- and inter-accuracies of the method was between -4.2% and 6.5%. The method was successfully applied to pharmacokinetic study of MFD after i.g. and i.v. administration in rats. The elimination half-life was (3.41±0.81) h for i.g. administration and (2.26±0.87) h for i.v. administration. The absolute bioavailability of MFD in rat was 79.1%.