通过偏最小二乘法(partial least squares,PLS)与人工神经网络(artificial neural networks,ANN)联用对鲜乳和掺有植物奶油的牛乳建立识别模型。用PLS法对原始数据进行主成分压缩,采用自组织竞争神经网络建模。取前3个主成分的21个吸收...通过偏最小二乘法(partial least squares,PLS)与人工神经网络(artificial neural networks,ANN)联用对鲜乳和掺有植物奶油的牛乳建立识别模型。用PLS法对原始数据进行主成分压缩,采用自组织竞争神经网络建模。取前3个主成分的21个吸收峰值输入网络,学习参数为0.05,网络训练迭代次数为200,模型鉴别准确率达100%。其次建立了植物奶油掺假量的定量检测PLS模型,并采用交互校验和外部检验考察模型的可靠性,模型的校正相关系数为0.996 3,均方估计残差(RMSEC)为0.110;交互校验均方残差(RMSECV)为0.142;应用所建PLS模型对样品中植物奶油添加量进行预测,并对预测值与真值进行配对t检验,结果表明两者差异均不显著。展开更多
基于近红外光谱技术,将偏最小二乘法(Partial Least Squares,PLS)和单隐层的反向传播网络(Back-Propagation Network,BP)联用并测定了鲜乳中4种主成分含量。用PLS法将原始数据压缩为主成分,取前3个主成分的14个数据输入网络,以Kolmogoro...基于近红外光谱技术,将偏最小二乘法(Partial Least Squares,PLS)和单隐层的反向传播网络(Back-Propagation Network,BP)联用并测定了鲜乳中4种主成分含量。用PLS法将原始数据压缩为主成分,取前3个主成分的14个数据输入网络,以Kolmogorov定理为依据,经过实验确定中间层的神经元个数为29,初始训练迭代次数为1000,建立了脂肪、蛋白质、乳糖、牛乳总固体4种主成分含量的预测校正模型。PLS-BP模型对样品4个组分含量的预测决定系数(R2)分别为:0.961、0.974、0.951、0.997;本研究为近红外光谱技术在鲜乳多组分快速检测提供了新思路。展开更多
文摘基于近红外光谱技术,将偏最小二乘法(Partial Least Squares,PLS)和单隐层的反向传播网络(Back-Propagation Network,BP)联用并测定了鲜乳中4种主成分含量。用PLS法将原始数据压缩为主成分,取前3个主成分的14个数据输入网络,以Kolmogorov定理为依据,经过实验确定中间层的神经元个数为29,初始训练迭代次数为1000,建立了脂肪、蛋白质、乳糖、牛乳总固体4种主成分含量的预测校正模型。PLS-BP模型对样品4个组分含量的预测决定系数(R2)分别为:0.961、0.974、0.951、0.997;本研究为近红外光谱技术在鲜乳多组分快速检测提供了新思路。