期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高适用性特征和MIPOA-DHKELM的锂电池SOH估计
1
作者 张宇 胡朝朝 吴铁洲 《电源技术》 CAS 北大核心 2024年第12期2419-2425,共7页
现有研究注重于提高锂电池健康状态(state of health,SOH)的估算精度,而缺乏实际应用性。针对这一问题,从恒流阶段电压在4.0~4.2 V之间的数据和恒压阶段电流在1.5~0.3 A之间的数据中各提取了两个具有高适用性的健康特征,通过这两个充电... 现有研究注重于提高锂电池健康状态(state of health,SOH)的估算精度,而缺乏实际应用性。针对这一问题,从恒流阶段电压在4.0~4.2 V之间的数据和恒压阶段电流在1.5~0.3 A之间的数据中各提取了两个具有高适用性的健康特征,通过这两个充电数据片段均可准确估计锂电池的SOH。此外,通过多种策略改进鹈鹕优化算法(pelican optimization algorithm,POA),使其收敛速度更快,种群分布更均匀。最后,采用改进的POA来优化多层极限学习机和混合核极限学习机融合成的深度混合核极限学习机模型。经实验验证,该方法无需大量充电数据即可提取健康特征,并且能够很好地追踪容量再生现象。在所有对比模型中,该模型预测精度最高,误差分布最稳定。 展开更多
关键词 SOH 高适用性特征 多策略改进POA 深度混合核极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部