期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于一种连续自编码网络的图像降维和重构 被引量:9
1
作者 胡昭华 宋耀良 《数据采集与处理》 CSCD 北大核心 2010年第3期318-323,共6页
针对高维连续数据的降维问题,提出一种新的非线性降维方法,称为连续自编码(Continuous autoencoder,C-autoencoder)神经网络,该方法采用限制玻耳兹曼机的连续形式(Continuous restricted Boltzmann machine,CRBM)的网络结构,通过训练具... 针对高维连续数据的降维问题,提出一种新的非线性降维方法,称为连续自编码(Continuous autoencoder,C-autoencoder)神经网络,该方法采用限制玻耳兹曼机的连续形式(Continuous restricted Boltzmann machine,CRBM)的网络结构,通过训练具有多个中间层的双向深层神经网络将高维连续数据转换成低维嵌套并继而重构高维连续数据。这种连续自编码网络提供了高维连续数据空间和低维嵌套结构的双向映射,有效解决了大多数非线性降维方法所不具备的逆向映射问题,特别适用于高维连续数据的降维和重构。将C-autoencoder用于连续帧图像的实验表明,C-autoencoder不仅能发现嵌入在高维连续帧图像中的非线性低维结构,也能有效地从低维结构中恢复原始高维图像数据,而且还能对连续帧图像有效地进行内插重构。 展开更多
关键词 高维连续数据 降维 连续自编码网络 内插重构
在线阅读 下载PDF
基于最大信息系数的随机森林算法 被引量:1
2
作者 程双勤 刘倩 朱懿敏 《信息技术与信息化》 2021年第7期37-40,46,共5页
为了解决随机森林在处理高维连续型数据时的不相容信息问题,一定程度上提高算法的准确率与计算效率,结合最大相关最小冗余的思想,提出了一种融合最大信息系数的随机森林算法(random forest algorithm combining maximum information coe... 为了解决随机森林在处理高维连续型数据时的不相容信息问题,一定程度上提高算法的准确率与计算效率,结合最大相关最小冗余的思想,提出了一种融合最大信息系数的随机森林算法(random forest algorithm combining maximum information coeffi cient,MICRF)。首先运用最大信息系数度量方法,分别计算特征与因变量,特征与特征之间的相关系数,根据两者之间的差值,进行贪婪搜索,依次筛选出最佳的特征子集来构造随机森林。在UCI数据集上的实验表明,与原始随机森林算法相比,MICRF算法对高维连续型数据的准确率与模型效率上有着明显的提高。 展开更多
关键词 随机森林 MIC 特征选择 高维连续数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部