For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th...For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.展开更多
The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the ...The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.展开更多
基金Supported by the Academician Foundation of the 14th Research Institute of China Electronics Technology Group Corporation(2008041001)~~
文摘For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.
文摘The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.