期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于单词领域特征敏感的多领域神经机器翻译
被引量:
1
1
作者
黄增城
满志博
+2 位作者
张玉洁
徐金安
陈钰枫
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第1期1-10,共10页
鉴于现有基于单词的领域特征学习方法在领域识别上的精度较低,为提高领域判别和提供准确的翻译,提出一种单词级别的领域特征敏感学习机制,包括两方面:1)编码器端的上下文特征编码,为了扩展单词级别的领域特征学习范围,引入卷积神经网络...
鉴于现有基于单词的领域特征学习方法在领域识别上的精度较低,为提高领域判别和提供准确的翻译,提出一种单词级别的领域特征敏感学习机制,包括两方面:1)编码器端的上下文特征编码,为了扩展单词级别的领域特征学习范围,引入卷积神经网络,并行提取不同大小窗口的词串作为单词的上下文特征;2)强化的领域特征学习,设计基于多层感知机的领域判别器模块,增强从单词上下文特征中获取更准确领域比例的学习能力,提升单词的领域判别准确率。在多领域UM-Corpus英-汉和OPUS英-法翻译任务中的实验结果显示,所提方法平均BLEU值分别超过强基线模型0.82和1.06,单词的领域判别准确率比基线模型分别提升10.07%和18.06%。对实验结果的进一步分析表明,所提翻译模型性能的提升得益于所提出的单词领域特征敏感的学习机制。
展开更多
关键词
多
领域
神经机器翻译
领域特征敏感
上下文
特征
领域
判别
在线阅读
下载PDF
职称材料
题名
基于单词领域特征敏感的多领域神经机器翻译
被引量:
1
1
作者
黄增城
满志博
张玉洁
徐金安
陈钰枫
机构
北京交通大学计算机与信息技术学院
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第1期1-10,共10页
基金
国家自然科学基金(61876198,61976016和61976015)资助。
文摘
鉴于现有基于单词的领域特征学习方法在领域识别上的精度较低,为提高领域判别和提供准确的翻译,提出一种单词级别的领域特征敏感学习机制,包括两方面:1)编码器端的上下文特征编码,为了扩展单词级别的领域特征学习范围,引入卷积神经网络,并行提取不同大小窗口的词串作为单词的上下文特征;2)强化的领域特征学习,设计基于多层感知机的领域判别器模块,增强从单词上下文特征中获取更准确领域比例的学习能力,提升单词的领域判别准确率。在多领域UM-Corpus英-汉和OPUS英-法翻译任务中的实验结果显示,所提方法平均BLEU值分别超过强基线模型0.82和1.06,单词的领域判别准确率比基线模型分别提升10.07%和18.06%。对实验结果的进一步分析表明,所提翻译模型性能的提升得益于所提出的单词领域特征敏感的学习机制。
关键词
多
领域
神经机器翻译
领域特征敏感
上下文
特征
领域
判别
Keywords
multi-domain NMT
domain feature-sensitive
context features
domain discrimination
分类号
TP391.2 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于单词领域特征敏感的多领域神经机器翻译
黄增城
满志博
张玉洁
徐金安
陈钰枫
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部