期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多尺度ResNeSt-50聚合网络与置信度传播的息肉图像分割
被引量:
1
1
作者
夏平
张光一
+2 位作者
雷帮军
邹耀斌
唐庭龙
《光学精密工程》
EI
CAS
CSCD
北大核心
2023年第18期2765-2780,共16页
针对大肠的息肉组织与正常组织间无明显边界,准确定位息肉位置困难的问题,提出了一种多尺度ResNeSt-50聚合网络融合顺序树重加权置信度传播(sequential Tree-Reweighted Message Passing,TRW-S)的息肉图像分割方法。为提高网络对息肉信...
针对大肠的息肉组织与正常组织间无明显边界,准确定位息肉位置困难的问题,提出了一种多尺度ResNeSt-50聚合网络融合顺序树重加权置信度传播(sequential Tree-Reweighted Message Passing,TRW-S)的息肉图像分割方法。为提高网络对息肉信息的表达能力,构建编码-解码结构的多尺度ResNeSt-50聚合网络,编码器由卷积模块和4级ResNeSt模块级联构建ResNeSt-50骨干网络,实现跨通道信息间的线性整合与连接;ResNeSt-50采用拆分注意力机制加强重要通道组的表现能力,增强了残差模块提取息肉图像信息的能力;解码部分下三层构建多层感受野模块(recep⁃tive field block,RFB)获取多尺度信息,然后用密集聚合模块整合其输出,并以快速解码方式输出解码信息,保证其分割性能的同时减少参数量;其次,生成预测图时采用测试时图像增强(Test-Time Augmentation,TTA)模块提升预测准确度,并增强网络的泛化能力;最后,构建基于马尔科夫随机场的TRW-S算法对输出的预测图进行后处理,以实现分割边缘的连续性和分割区域内部的一致性。对大肠息肉数据集Kvasir-SEG的测试结果表明,本文方法相比于U-Net,UNet++,ResUnet、SFA、PraNet等算法,mDice值达91.6%,mIoU达86.3%,Smeasure达0.921,MAE为0.023,优于其他五种息肉分割算法;在未知数据集ETIS-LaribPolypDB,ColonDB上测试结果表明,相比于PraNet模型,本文模型的mDice值分别提升了14.2%,7.7%;从本文模型在ETIS-LaribPolypDB数据集上的分割表现看,本文算法对微小病变十分敏感;因此,本文算法分割的息肉图像,在分割区域内部的一致性、分割边缘的连续性、轮廓清晰度、捕捉微小病变能力等方面均表现出优良的性能,同时,对未知数据集具有较好的泛化能力。
展开更多
关键词
息肉图像分割
多尺
度
密集聚合网络
拆分注意力机制
顺序树重加权置信度传播
多尺
度
感受野
在线阅读
下载PDF
职称材料
题名
多尺度ResNeSt-50聚合网络与置信度传播的息肉图像分割
被引量:
1
1
作者
夏平
张光一
雷帮军
邹耀斌
唐庭龙
机构
三峡大学水电工程智能视觉监测湖北省重点实验室
三峡大学计算机与信息学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2023年第18期2765-2780,共16页
基金
国家自然科学基金资助项目(No.U1401252)
湖北省重点实验室开放基金资助项目(No.2018SDSJ07).
文摘
针对大肠的息肉组织与正常组织间无明显边界,准确定位息肉位置困难的问题,提出了一种多尺度ResNeSt-50聚合网络融合顺序树重加权置信度传播(sequential Tree-Reweighted Message Passing,TRW-S)的息肉图像分割方法。为提高网络对息肉信息的表达能力,构建编码-解码结构的多尺度ResNeSt-50聚合网络,编码器由卷积模块和4级ResNeSt模块级联构建ResNeSt-50骨干网络,实现跨通道信息间的线性整合与连接;ResNeSt-50采用拆分注意力机制加强重要通道组的表现能力,增强了残差模块提取息肉图像信息的能力;解码部分下三层构建多层感受野模块(recep⁃tive field block,RFB)获取多尺度信息,然后用密集聚合模块整合其输出,并以快速解码方式输出解码信息,保证其分割性能的同时减少参数量;其次,生成预测图时采用测试时图像增强(Test-Time Augmentation,TTA)模块提升预测准确度,并增强网络的泛化能力;最后,构建基于马尔科夫随机场的TRW-S算法对输出的预测图进行后处理,以实现分割边缘的连续性和分割区域内部的一致性。对大肠息肉数据集Kvasir-SEG的测试结果表明,本文方法相比于U-Net,UNet++,ResUnet、SFA、PraNet等算法,mDice值达91.6%,mIoU达86.3%,Smeasure达0.921,MAE为0.023,优于其他五种息肉分割算法;在未知数据集ETIS-LaribPolypDB,ColonDB上测试结果表明,相比于PraNet模型,本文模型的mDice值分别提升了14.2%,7.7%;从本文模型在ETIS-LaribPolypDB数据集上的分割表现看,本文算法对微小病变十分敏感;因此,本文算法分割的息肉图像,在分割区域内部的一致性、分割边缘的连续性、轮廓清晰度、捕捉微小病变能力等方面均表现出优良的性能,同时,对未知数据集具有较好的泛化能力。
关键词
息肉图像分割
多尺
度
密集聚合网络
拆分注意力机制
顺序树重加权置信度传播
多尺
度
感受野
Keywords
polyp image segmentation
multiscale dense aggregation network
split-attention
sequential tree-reweighted message passing
multiscale receptive field
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多尺度ResNeSt-50聚合网络与置信度传播的息肉图像分割
夏平
张光一
雷帮军
邹耀斌
唐庭龙
《光学精密工程》
EI
CAS
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部