A trust region method combining with nonmonotone technique is proposed tor solving symmetric nonlinear equations. The global convergence of the given method will be established under suitable conditions. Numerical res...A trust region method combining with nonmonotone technique is proposed tor solving symmetric nonlinear equations. The global convergence of the given method will be established under suitable conditions. Numerical results show that the method is interesting for the given problems.展开更多
After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations b...After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schr?dinger equation as a concrete example, the method is recommended in detail.展开更多
With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) hav...With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
In this paper, the nonlinear dispersive Zakharov- Kuznetsov equation is solved by using the generalized auxiliary equation method. As a result, new solitary pattern, solitary wave and singular solitary wave solutions ...In this paper, the nonlinear dispersive Zakharov- Kuznetsov equation is solved by using the generalized auxiliary equation method. As a result, new solitary pattern, solitary wave and singular solitary wave solutions are found.展开更多
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ...In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.展开更多
In this article,we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the...In this article,we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the modified simple equation method.The proposed method is so powerful and effective to solve nonlinear space-time fractional differential equations by with modified Riemann–Liouville derivative.展开更多
In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo'...In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.展开更多
A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.
A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified w...A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.展开更多
基金Supported by SF of Guangxi University(X061041)Supported by NSF of China(10761001)
文摘A trust region method combining with nonmonotone technique is proposed tor solving symmetric nonlinear equations. The global convergence of the given method will be established under suitable conditions. Numerical results show that the method is interesting for the given problems.
基金国家自然科学基金,浙江省自然科学基金,Foundation of State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation (PLN 0104),the Foundation of Educational Commission,浙江省宁波市博士基金
文摘After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schr?dinger equation as a concrete example, the method is recommended in detail.
基金the Natural Science Foundation of Education Department of Henan Province of China under Grant No.2007110010the Science Foundation of Henan University of Science and Technology under Grant Nos.2006ZY-001 and 2006ZY-011
文摘With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金supported by the National Natural Science Foundation of China under Grant No.10647112the Foundation of Donghua University
文摘In this paper, the nonlinear dispersive Zakharov- Kuznetsov equation is solved by using the generalized auxiliary equation method. As a result, new solitary pattern, solitary wave and singular solitary wave solutions are found.
文摘In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.
文摘In this article,we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the modified simple equation method.The proposed method is so powerful and effective to solve nonlinear space-time fractional differential equations by with modified Riemann–Liouville derivative.
文摘In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.
基金the National Natural Science Foundation of China (No. 60773119)
文摘A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.11032006,11072094,and 11121202)the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20100211110022)+2 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant No.2013GB110002)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-1)the Scholarship Award for Excellent Doctoral Student granted by the Lanzhou University
文摘A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.