期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DVR模型的低复杂度数字预失真方法
1
作者 陆旭 吴雅琦 +2 位作者 周先春 朱心悦 陈章 《微波学报》 北大核心 2025年第1期51-57,共7页
数字预失真技术是一种被广泛应用的功率放大器线性化技术。分解矢量旋转(DVR)数字预失真模型因其容易实现的硬件结构,良好的线性化性能,被广泛地用于功放非线性的改善。然而,DVR模型参数提取的计算复杂度与运算开销会随着算子矩阵项数... 数字预失真技术是一种被广泛应用的功率放大器线性化技术。分解矢量旋转(DVR)数字预失真模型因其容易实现的硬件结构,良好的线性化性能,被广泛地用于功放非线性的改善。然而,DVR模型参数提取的计算复杂度与运算开销会随着算子矩阵项数和数据长度的增多而急剧增加。针对这一问题,本文提出了一种基于DVR模型的低运算复杂度数字预失真方法。所提方法包含低复杂度分解矢量旋转(LCDVR)数字预失真模型和非均匀选择采样(NSS)算法两个方面,共同减少模型参数提取时的运算开销。所提LCDVR模型通过增加算子矩阵中0项的数量,减少了所需的乘法运算操作;同时,根据信号幅度分布特点,采用NSS算法进行数据采样点选取,可以减少参数提取时所需的数据长度,并使选择后的信号幅度分布相对均匀,便于分析LCDVR模型幅度分段值的选取。实验结果表明,当输入信号数据长度为70000时,LCDVR模型的θ_(max)为0.7,θ_(min)为0.3;采用NSS算法后的数据长度为10849时,本文所提方法的参数提取所需乘法运算量仅为DVR模型的2.24%,且能够保持相当的线性化效果。因此,本文所提方法可以在保持线性化精度的同时显著降低参数提取中的运算复杂度,具有较强的应用性和可实现性。 展开更多
关键词 线性化 数字预失真 功率放大器 低复杂度分解矢量旋转模型 非均匀选择采样算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部