Recently,AnstÖter and co-workers[J.Am.Chem.Soc.141,6132(2019)]have provided the first photoelectron spectroscopic determination of the anion-πbond strength(De)using iodide-hexafluorobenzene(I-·C6F6)as the a...Recently,AnstÖter and co-workers[J.Am.Chem.Soc.141,6132(2019)]have provided the first photoelectron spectroscopic determination of the anion-πbond strength(De)using iodide-hexafluorobenzene(I-·C6F6)as the archetypical system.In combination with an equation-of-motion coupled cluster theory,namely EOM-IP-CCSD(d T),using Dunning’s aug-cc-p VDZ(a VDZ)basis set,Dein I-·C6F6 was found to be-0.53 e V with an uncertainty less than±0.03 e V.The interaction was claimed to arise for a large part from correlation forces(41%)with only a 23%contribution from electrostatic forces.In the present work,we performed the coupled-cluster with single and double and perturbative triple excitations,CCSD(T),calculations.We found that CCSD(T)/a VDZ can have an uncertainty up to 0.113 e V due to the basis set incompleteness.Our calculations disclosed that the previous calculations on the electrostatic contribution are concealed by the contributions from the exchange and Pauli repulsion.The electrostatic contribution is actually determinant,being more than double of the correlation contribution in the I-·C6F6 complex at the equilibrium binding distance.展开更多
Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro react...Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers.A group contribution method based on 27 groups is developed for the correlation of static dielectric constant of ionic liquids in this paper.The ionic liquids considered include imidazolium,pyridinium,pyrrolidinium,alkylammonium,alkylsulfonium,morpholinium and piperidinium cations and various anions.The data collected cover the temperature ranges of 278.15-343.15 K and static dielectric constant ranges of 9.4-85.6.The results of the method show a satisfactory agreement with the literature data with an average absolute relative deviation of 7.41%,which is generally of the same order of the experimental data accuracy.The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at different temperatures.展开更多
基金supported by the National Natural Science Foundation of China(No.21688102 and No.91027044)。
文摘Recently,AnstÖter and co-workers[J.Am.Chem.Soc.141,6132(2019)]have provided the first photoelectron spectroscopic determination of the anion-πbond strength(De)using iodide-hexafluorobenzene(I-·C6F6)as the archetypical system.In combination with an equation-of-motion coupled cluster theory,namely EOM-IP-CCSD(d T),using Dunning’s aug-cc-p VDZ(a VDZ)basis set,Dein I-·C6F6 was found to be-0.53 e V with an uncertainty less than±0.03 e V.The interaction was claimed to arise for a large part from correlation forces(41%)with only a 23%contribution from electrostatic forces.In the present work,we performed the coupled-cluster with single and double and perturbative triple excitations,CCSD(T),calculations.We found that CCSD(T)/a VDZ can have an uncertainty up to 0.113 e V due to the basis set incompleteness.Our calculations disclosed that the previous calculations on the electrostatic contribution are concealed by the contributions from the exchange and Pauli repulsion.The electrostatic contribution is actually determinant,being more than double of the correlation contribution in the I-·C6F6 complex at the equilibrium binding distance.
基金Supported by the National Natural Science Foundation of China(21176206)the Project of Zhejiang Key Scientific and Technological Innovation Team(2010R50017)
文摘Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers.A group contribution method based on 27 groups is developed for the correlation of static dielectric constant of ionic liquids in this paper.The ionic liquids considered include imidazolium,pyridinium,pyrrolidinium,alkylammonium,alkylsulfonium,morpholinium and piperidinium cations and various anions.The data collected cover the temperature ranges of 278.15-343.15 K and static dielectric constant ranges of 9.4-85.6.The results of the method show a satisfactory agreement with the literature data with an average absolute relative deviation of 7.41%,which is generally of the same order of the experimental data accuracy.The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at different temperatures.