The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capabilit...The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capability for UO22+ were synthesized by in situ polymerization of acrylonitrile monomers on GO surfaces, followed by amidoximation treatment with hydroxylamine. The adsorption capacities of PAO/rGO composites for UO22+ reached as high as 872 mg/g at pH 4.0. The excellent tolerance of these composites for high salinity and their regeneration-reuse properties can be applied in the nuclear-fuel industry by high extraction of trace UO22+ ions from seawater.展开更多
基金supported by the Chinese National Fusion Project for ITER(2013GB110005)the National Natural Science Foundation of China(91326202,21207136,21272236,21225730)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions,Hefei Center for Physical Science and Technology(2012FXZY005)the Science Foundation of Institute of Plasma Physics(DSJJ-13-YY01)
文摘The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capability for UO22+ were synthesized by in situ polymerization of acrylonitrile monomers on GO surfaces, followed by amidoximation treatment with hydroxylamine. The adsorption capacities of PAO/rGO composites for UO22+ reached as high as 872 mg/g at pH 4.0. The excellent tolerance of these composites for high salinity and their regeneration-reuse properties can be applied in the nuclear-fuel industry by high extraction of trace UO22+ ions from seawater.