期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
结合桥梁难分样本优化的大清河流域水坝遥感检测
1
作者 郭勇 张琳翔 +1 位作者 许泽宇 蔡中祥 《自然资源遥感》 CSCD 北大核心 2024年第4期201-209,共9页
水坝的检测对于城市规划、生态环境评估等有着重要意义。目前基于遥感的水坝检测研究主要是基于样本集的算法改进或在小区域上的检测,缺乏在大尺度地学区域的实践应用。而在大区域中,水坝分布稀疏,地表存在更多的桥梁等地物会对水坝的... 水坝的检测对于城市规划、生态环境评估等有着重要意义。目前基于遥感的水坝检测研究主要是基于样本集的算法改进或在小区域上的检测,缺乏在大尺度地学区域的实践应用。而在大区域中,水坝分布稀疏,地表存在更多的桥梁等地物会对水坝的检测形成显著干扰。为应对这一问题,该文以大清河流域为例,研究大尺度区域内的水坝遥感检测。该文研究主要分为2个阶段,第一阶段是将容易与水坝混淆的桥梁作为难分负样本(即容易产生假阳性的样本)参加训练,基于DIOR公开数据集改进适合于水坝提取的神经网络结构;第二阶段是基于优化后的网络以及大区域多源样本数据进行微调训练获取模型,并实现大清河区域的水坝检测。优化后的模型在第一阶段测试中水坝检测F1分数为0.783,在第二阶段大清河流域检测得到了330处水坝,其结果与现有公开的水坝空间分布数据集GRandD相符,且更为详细。结果表明,结合桥梁样本优化训练后的模型可以有效避免对桥梁的误提取,从而提高检测精度。 展开更多
关键词 水坝 难分负样本 大清河流域 CenterNet网络 目标检测
在线阅读 下载PDF
基于难分样本挖掘的快速区域卷积神经网络目标检测研究 被引量:13
2
作者 张烨 许艇 +2 位作者 冯定忠 蒋美仙 吴光华 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1496-1502,共7页
针对经典的快速区域卷积神经网络(Faster RCNN)训练过程存在太多难训练样本、召回率低等问题,该文采用一种基于在线难分样本挖掘技术(OHEM)与负难分样本挖掘(HNEM)技术相结合的方法,通过训练中实时筛选的最大损失值难分样本进行误差传递... 针对经典的快速区域卷积神经网络(Faster RCNN)训练过程存在太多难训练样本、召回率低等问题,该文采用一种基于在线难分样本挖掘技术(OHEM)与负难分样本挖掘(HNEM)技术相结合的方法,通过训练中实时筛选的最大损失值难分样本进行误差传递,解决了模型对难分样本检测率低问题,提高模型训练效率;为更好地提高模型的召回率和模型的泛化性,该文改进了非极大值抑制(NMS)算法,设置了置信度阈值罚函数,又引入多尺度、数据增强等训练方法。最后通过比较改进前后的结果,经敏感性实验分析表明,该算法在VOC2007数据集上取得了较好效果,平均精度均值从69.9%提升到了74.40%,在VOC2012上从70.4%提升到79.3%,验证了该算法的优越性。 展开更多
关键词 多目标检测 在线样本挖掘 难分样本挖掘 深度学习 非极大值抑制
在线阅读 下载PDF
基于用户偏好挖掘生成对抗网络的推荐系统 被引量:3
3
作者 李广丽 滑瑾 +4 位作者 袁天 朱涛 邬任重 姬东鸿 张红斌 《计算机科学与探索》 CSCD 北大核心 2020年第5期803-814,共12页
用户偏好挖掘是推荐系统研究中的关键问题,它对于改善推荐质量具有非常重要的作用。提出用户偏好挖掘生成对抗网络(UPM-GAN),从两个角度深入分析用户隐含偏好:基于三元组损失算法对用户评分矩阵进行处理,挖掘难分负样本,以更好地确立正... 用户偏好挖掘是推荐系统研究中的关键问题,它对于改善推荐质量具有非常重要的作用。提出用户偏好挖掘生成对抗网络(UPM-GAN),从两个角度深入分析用户隐含偏好:基于三元组损失算法对用户评分矩阵进行处理,挖掘难分负样本,以更好地确立正样本,为准确刻画用户偏好奠定基础;基于奇异值分解(SVD++)算法构建UPM-GAN的生成模型,利用SVD++算法中的偏置信息及隐式参数描述用户隐含偏好,以提高评分预测精度。最后使用最新生成对抗网络(GAN)框架完成推荐系统训练,在MovieLens-100K、MovieLens-1M这两个主流数据集上展开实验仿真。实验表明UPM-GAN的Precision@K、均值平均精度(MAP)等多项指标均优于对比基线,且它还具有收敛速度快、训练过程平稳等优点。基于UPM-GAN的推荐系统具有一定实用价值。 展开更多
关键词 推荐系统 生成对抗网络(GAN) 用户偏好挖掘 奇异值分解(SVD++) 三元组损失 难分负样本
在线阅读 下载PDF
Improved pedestrian detection with peer AdaBoost cascade 被引量:4
4
作者 FU Hong-pu ZOU Bei-ji +3 位作者 ZHU Cheng-zhang DAI Yu-lan JIANG Ling-zi CHANG Zhe 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2269-2279,共11页
Focusing on data imbalance and intraclass variation,an improved pedestrian detection with a cascade of complex peer AdaBoost classifiers is proposed.The series of the AdaBoost classifiers are learned greedily,along wi... Focusing on data imbalance and intraclass variation,an improved pedestrian detection with a cascade of complex peer AdaBoost classifiers is proposed.The series of the AdaBoost classifiers are learned greedily,along with negative example mining.The complexity of classifiers in the cascade is not limited,so more negative examples are used for training.Furthermore,the cascade becomes an ensemble of strong peer classifiers,which treats intraclass variation.To locally train the AdaBoost classifiers with a high detection rate,a refining strategy is used to discard the hardest negative training examples rather than decreasing their thresholds.Using the aggregate channel feature(ACF),the method achieves miss rates of 35%and 14%on the Caltech pedestrian benchmark and Inria pedestrian dataset,respectively,which are lower than that of increasingly complex AdaBoost classifiers,i.e.,44%and 17%,respectively.Using deep features extracted by the region proposal network(RPN),the method achieves a miss rate of 10.06%on the Caltech pedestrian benchmark,which is also lower than 10.53%from the increasingly complex cascade.This study shows that the proposed method can use more negative examples to train the pedestrian detector.It outperforms the existing cascade of increasingly complex classifiers. 展开更多
关键词 peer classifier hard negative refining pedestrian detection CASCADE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部