This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the ...This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the basis of the pioneering work of Duncan and Hu, a Ito's formula is given. An improved derivative operator to Lyapunov functions is constructed, and the sufficient conditions for the stochastically stability of linear stochastic differential equations driven by FBM are established. These extend the stochastic Lyapunov stability theories.展开更多
基金Natural Science Foundation of Shanghai,China(No.07ZR14002)
文摘This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the basis of the pioneering work of Duncan and Hu, a Ito's formula is given. An improved derivative operator to Lyapunov functions is constructed, and the sufficient conditions for the stochastically stability of linear stochastic differential equations driven by FBM are established. These extend the stochastic Lyapunov stability theories.