Background Heart failure is a significant problem leading to repeated hospitalizations. Telemonitoring and hemodynamic monitoring have demonstrated success in reducing hospitalization rates, but not all studies report...Background Heart failure is a significant problem leading to repeated hospitalizations. Telemonitoring and hemodynamic monitoring have demonstrated success in reducing hospitalization rates, but not all studies reported significant effects. The aim of this systematic review and meta-analysis is to examine the effectiveness of telemonitoring and wireless hemodynamic monitoring devices in reducing hospitalizations in heart failure. Methods & Results PubMed and Cochrane Library were searched up to 1st May 2017 for articles that investigated the effects of telemonitoring or hemodynamic monitoring on hospitalization rates in heart failure. In 31,501 patients (mean age: 68 ± 12 years; 61% male; follow-up 11 ± 8 months), telemonitoring reduced hospitalization rates with a HR of 0.73 (95% CI: 0.65-0.83; P 〈 0.0001) with significant heterogeneity (I2 = 94%). These effects were observed in the short-term (≤ 6 months: HR = 0.77, 95% CI: 0.65-0.89; P 〈 0.01) and long-term (≥ 12 months: HR = 0.73, 95% CI: 0.62-0.87; P 〈 0.0001). In 4831 patients (mean age 66 ± 18 years; 66% male; follow-up 13 ± 4 months), wireless hemodynamic monitoring also reduced hospitalization rates with a HR of 0.60 (95% CI: 0.53-0.69; P 〈 0.001) with significant heterogeneity (I2 = 64%).This reduction was observed both in the short-term (HR = 0.55, 95% CI: 0.45-0.68; P 〈 0.001; I2 = 72%) and long-term (HR = 0.64, 95% CI: 0.57-0.72; P 〈 0.001; I2 = 55%). Conclusions Telemonitoring and hemodynamic monitoring reduce hospitalization in both short- and long-term in heart failure patients展开更多
Based upon the stochastic resonance theory,the formation mechanism of 100-kyr cycles in climate system is numerically studied in the perspective of stochastic dynamics.In this study,firstly we combine the idealized al...Based upon the stochastic resonance theory,the formation mechanism of 100-kyr cycles in climate system is numerically studied in the perspective of stochastic dynamics.In this study,firstly we combine the idealized albedo model with the geological evidence and observation in climate system to construct a new albedo model.Secondly,a bistable nonlinear system is constructed by introducing the albedo model into zero-dimensional energy balance model.Finally,based on this new system,with the solar radiation cycles and stochastic perturbation simultaneously taken into account,the variation of 100-kyr cycles is analyzed by numerical simulations.The results show that,when the noise intensity reaches a certain value,the stochastic resonance can be triggered.However,the noise intensity in this level does not exist in the actual climate system.In order to explain the formation mechanism of 100-kyr glacial-interglacial cycles forced by the weak solar radiation cycles,besides the solar radiation stochastic perturbation,the stochastic dynamic effects of the other "non-solar" radiation stochastic perturbation in the climate change processes should also be considered.The stochastic dynamic simulations taking the two types of stochastic perturbation into consideration show that,when the two types of appropriately observable stochastic perturbation are introduced,the stochastic resonance also can be generated.In this situation,the contribution rate of solar radiation stochastic perturbation is about 38%,which proves the importance of solar radiation stochastic perturbation in the formation of 100-kyr climate cycles.展开更多
In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned wi...In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. FinMly, illustrated examples are given to show the effectiveness of the proposed criteria.展开更多
文摘Background Heart failure is a significant problem leading to repeated hospitalizations. Telemonitoring and hemodynamic monitoring have demonstrated success in reducing hospitalization rates, but not all studies reported significant effects. The aim of this systematic review and meta-analysis is to examine the effectiveness of telemonitoring and wireless hemodynamic monitoring devices in reducing hospitalizations in heart failure. Methods & Results PubMed and Cochrane Library were searched up to 1st May 2017 for articles that investigated the effects of telemonitoring or hemodynamic monitoring on hospitalization rates in heart failure. In 31,501 patients (mean age: 68 ± 12 years; 61% male; follow-up 11 ± 8 months), telemonitoring reduced hospitalization rates with a HR of 0.73 (95% CI: 0.65-0.83; P 〈 0.0001) with significant heterogeneity (I2 = 94%). These effects were observed in the short-term (≤ 6 months: HR = 0.77, 95% CI: 0.65-0.89; P 〈 0.01) and long-term (≥ 12 months: HR = 0.73, 95% CI: 0.62-0.87; P 〈 0.0001). In 4831 patients (mean age 66 ± 18 years; 66% male; follow-up 13 ± 4 months), wireless hemodynamic monitoring also reduced hospitalization rates with a HR of 0.60 (95% CI: 0.53-0.69; P 〈 0.001) with significant heterogeneity (I2 = 64%).This reduction was observed both in the short-term (HR = 0.55, 95% CI: 0.45-0.68; P 〈 0.001; I2 = 72%) and long-term (HR = 0.64, 95% CI: 0.57-0.72; P 〈 0.001; I2 = 55%). Conclusions Telemonitoring and hemodynamic monitoring reduce hospitalization in both short- and long-term in heart failure patients
基金supported by the National Natural Science Foundation of China(Grant No.41205083)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Based upon the stochastic resonance theory,the formation mechanism of 100-kyr cycles in climate system is numerically studied in the perspective of stochastic dynamics.In this study,firstly we combine the idealized albedo model with the geological evidence and observation in climate system to construct a new albedo model.Secondly,a bistable nonlinear system is constructed by introducing the albedo model into zero-dimensional energy balance model.Finally,based on this new system,with the solar radiation cycles and stochastic perturbation simultaneously taken into account,the variation of 100-kyr cycles is analyzed by numerical simulations.The results show that,when the noise intensity reaches a certain value,the stochastic resonance can be triggered.However,the noise intensity in this level does not exist in the actual climate system.In order to explain the formation mechanism of 100-kyr glacial-interglacial cycles forced by the weak solar radiation cycles,besides the solar radiation stochastic perturbation,the stochastic dynamic effects of the other "non-solar" radiation stochastic perturbation in the climate change processes should also be considered.The stochastic dynamic simulations taking the two types of stochastic perturbation into consideration show that,when the two types of appropriately observable stochastic perturbation are introduced,the stochastic resonance also can be generated.In this situation,the contribution rate of solar radiation stochastic perturbation is about 38%,which proves the importance of solar radiation stochastic perturbation in the formation of 100-kyr climate cycles.
基金Acknowledgments The authors thank the referees for their reports and many valuable comments and suggestions that greatly improved the presentation of this paper. The work is supported by the National Natural Science Foundation of China (No. 11261017), the Key Laboratory of Biological Resources Protection and Utilization of Hubei Province (No. PKLHB1323) and the Key Project of Chinese Ministry of Education (No. 212111).
文摘In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. FinMly, illustrated examples are given to show the effectiveness of the proposed criteria.