irritation to human beings.The removal of hexanal has rarely been investigated.In this study,we found that the amount of Mn vacancies inγ-MnOOH significantly affects its catalytic activity toward hexanal degradation ...irritation to human beings.The removal of hexanal has rarely been investigated.In this study,we found that the amount of Mn vacancies inγ-MnOOH significantly affects its catalytic activity toward hexanal degradation and transformation into CO2.The as-synthesized Mn vacancy-richγ-MnOOH exhibited high efficiency toward hexanal removal,achieving 100%degradation of 15 ppm hexanal at 85℃ and complete transformation into CO2 at 160 ℃ under the gas hourly space velocity of 240 L/(g·h);its activity could be completely regenerated by in-situ heat treatment at 180°C.Moreover,it was found that the degradation of hexanal occurred in a stepwise manner,i.e.,losing one CH2 unit per step.Electron spinning resonance studies detected strong indicative signals for the presence of the superoxide anion radical(?O2^–)on Mn-vacancy-richγ-MnOOH,which may act as active oxygen species for the hexanal degradation.Understanding the role of Mn-vacancy and the mechanism of hexanal degradation byγ-MnOOH are essential for developing efficient oxide catalysts for volatile organic compounds besides hexanal.展开更多
This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with i...This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.展开更多
The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional...The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.展开更多
Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of th...Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.展开更多
Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is st...Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is still rare.Here,a series of Bi/BiOBr composites were solvothermally synthe-sized and applied in solar-light-driven photocatalytic degradation of gaseous n-hexane.The charac-terization results revealed that both increasing number of functional groups of alcohol solvent(from methanol and ethylene glycol to glycerol)and solvothermal temperature(from 160 and 180to 200℃)facilitated the in-situ formation of metallic Bi nanospheres on BiOBr nanoplates withexposed(110)facets.Meanwhile,chemical bonding between Bi and BiOBr was observed on theseexposed facets that resulted in the formation of surface oxygen vacancy.Furthermore,the synergis-tic effect of optimum surface oxygen vacancy on exposed(110)facets led to a high visible light re-sponse,narrow band gap,great photocurrent,low recombination rate of the charge carriers,andstrong·O2-and h*formation,all of which resulted in the highest removal efficiency of 97.4%within120 min of 15 ppmv of n-hexane on Bi/BiOBr.Our findings efficiently broaden the application ofBi-based photocatalysis technology in the purification of gaseous straight-chain pollutants emittedby the petrochemical industry.展开更多
基金supported by National Natural Science Foundation of China (21677083)Suzhou-Tsinghua Innovation Guiding Program (2016SZ0104)~~
文摘irritation to human beings.The removal of hexanal has rarely been investigated.In this study,we found that the amount of Mn vacancies inγ-MnOOH significantly affects its catalytic activity toward hexanal degradation and transformation into CO2.The as-synthesized Mn vacancy-richγ-MnOOH exhibited high efficiency toward hexanal removal,achieving 100%degradation of 15 ppm hexanal at 85℃ and complete transformation into CO2 at 160 ℃ under the gas hourly space velocity of 240 L/(g·h);its activity could be completely regenerated by in-situ heat treatment at 180°C.Moreover,it was found that the degradation of hexanal occurred in a stepwise manner,i.e.,losing one CH2 unit per step.Electron spinning resonance studies detected strong indicative signals for the presence of the superoxide anion radical(?O2^–)on Mn-vacancy-richγ-MnOOH,which may act as active oxygen species for the hexanal degradation.Understanding the role of Mn-vacancy and the mechanism of hexanal degradation byγ-MnOOH are essential for developing efficient oxide catalysts for volatile organic compounds besides hexanal.
基金Supported by the Natural Science Foundation of Guangdong Province,China(8151064101000049)
文摘This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.
文摘The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.
文摘Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.
文摘Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is still rare.Here,a series of Bi/BiOBr composites were solvothermally synthe-sized and applied in solar-light-driven photocatalytic degradation of gaseous n-hexane.The charac-terization results revealed that both increasing number of functional groups of alcohol solvent(from methanol and ethylene glycol to glycerol)and solvothermal temperature(from 160 and 180to 200℃)facilitated the in-situ formation of metallic Bi nanospheres on BiOBr nanoplates withexposed(110)facets.Meanwhile,chemical bonding between Bi and BiOBr was observed on theseexposed facets that resulted in the formation of surface oxygen vacancy.Furthermore,the synergis-tic effect of optimum surface oxygen vacancy on exposed(110)facets led to a high visible light re-sponse,narrow band gap,great photocurrent,low recombination rate of the charge carriers,andstrong·O2-and h*formation,all of which resulted in the highest removal efficiency of 97.4%within120 min of 15 ppmv of n-hexane on Bi/BiOBr.Our findings efficiently broaden the application ofBi-based photocatalysis technology in the purification of gaseous straight-chain pollutants emittedby the petrochemical industry.