杜邦公司新研制推出采用杜邦智能纤维为主要材料的消防服,其耐热性能提高20%。这种新型智能纤维DuPont Nomex On Demand在紧急高温环境可自动膨胀而包容更多空气,从而提高其绝热性能。这种新材料最初研制开发用于消防器材的防热内衬...杜邦公司新研制推出采用杜邦智能纤维为主要材料的消防服,其耐热性能提高20%。这种新型智能纤维DuPont Nomex On Demand在紧急高温环境可自动膨胀而包容更多空气,从而提高其绝热性能。这种新材料最初研制开发用于消防器材的防热内衬,用于消防服可使其更轻便灵活,而其防热性能更好。展开更多
A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive st...A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material.展开更多
Flowline bundle system consisting of carrier pipe,sleeve pipe and internal flowlines offers innovative solution for the infield transportation of oil and gas. Due to its features,flowline bundle offers a couple of adv...Flowline bundle system consisting of carrier pipe,sleeve pipe and internal flowlines offers innovative solution for the infield transportation of oil and gas. Due to its features,flowline bundle offers a couple of advantages over conventional flowline in particular for cases where multi-flowlines and high thermal performance is of great interest. The main benefits and advantages of such system include excellent thermal performance to prevent wax formation and hydrates,multiple bundled flowlines,mechanical and corrosion protection,potential reuse, etc. With the developments of offshore oil and gas industries,more and more hydrocarbon resources are being explored and discovered from shallow to deep water. Pipeline bundle system can be a smart solution for certain applications,which can be safe and cost effective solution. The objective of this paper is to overview pipeline bundle technology,outline detailed engineering design issue and procedure. Focus is given to its potential application in offshore for infield transportation. Engineering design principles and procedures for pipeline bundle system are highlighted. Construction methods of flowline bundle onshore are reviewed. Offshore towing and installation of pipeline bundle procedure is outlined.展开更多
A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature...A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.展开更多
基金Project 20062147 supported by the Liaoning Province Natural Science Foundation of China
文摘A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material.
文摘Flowline bundle system consisting of carrier pipe,sleeve pipe and internal flowlines offers innovative solution for the infield transportation of oil and gas. Due to its features,flowline bundle offers a couple of advantages over conventional flowline in particular for cases where multi-flowlines and high thermal performance is of great interest. The main benefits and advantages of such system include excellent thermal performance to prevent wax formation and hydrates,multiple bundled flowlines,mechanical and corrosion protection,potential reuse, etc. With the developments of offshore oil and gas industries,more and more hydrocarbon resources are being explored and discovered from shallow to deep water. Pipeline bundle system can be a smart solution for certain applications,which can be safe and cost effective solution. The objective of this paper is to overview pipeline bundle technology,outline detailed engineering design issue and procedure. Focus is given to its potential application in offshore for infield transportation. Engineering design principles and procedures for pipeline bundle system are highlighted. Construction methods of flowline bundle onshore are reviewed. Offshore towing and installation of pipeline bundle procedure is outlined.
文摘A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.