To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an...To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.展开更多
The hot deformation behavior of the homogenized Al?3.2Mg?0.4Er aluminum alloy was investigated at 573?723 K under strain rates of 0.001?1 s?1. On the basis of compression experimental results, an accurate phenomenolog...The hot deformation behavior of the homogenized Al?3.2Mg?0.4Er aluminum alloy was investigated at 573?723 K under strain rates of 0.001?1 s?1. On the basis of compression experimental results, an accurate phenomenological constitutive equation that coupled the effects of strain rate, deformation temperature and strain was modeled. Furthermore, a kinetic model of dynamic recrystallization and processing map were also presented. The results show that the flow stress of the studied Al?3.2Mg?0.4Er alloy can be predicted accurately using the proposed constitutive model. The evolution of microstructure and the volume fraction of dynamic recrystallization can be described exactly in terms of S-curves with the proposed kinetic model. Moreover, the processing maps for hot working at different strains were constructed, suggesting the optimum processing conditions for this alloy are 573 K, 0.001 s?1 and 723 K, 0.001?0.1 s?1.展开更多
It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarizatio...It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.展开更多
A new method for synthesizing Mg-Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be signific...A new method for synthesizing Mg-Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be significantly reduced. The SEM results indicate that a continuous and compact Mg-Al hydrotalcite coating is formed on the surface of Mg alloy after short time EF treatment. However, a long time treatment would make the coating partially exfoliate. The corrosion current density (Jcor ) of the coated sample (EF1+1 h) is approximately two orders of magnitude lower than that of Mg alloy substrate. The test of electrochemical impedance spectroscopy (EIS) and immersion corrosion also suggest that the coating can effectively protect Mg alloy against corrosion.展开更多
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo...Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.展开更多
In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning ele...In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) tests as well as the shear punch test were employed to study the quality and strength of the bond between the two alloys. It was found that the process temperature was an important factor affecting the level of interfacial bonding, such that increasing the temperature from 250 to 300℃ has improved the strength by 37% and the thickness of the bond between the layers by 4.5%. Moreover, this temperature rise reduced the maximum required forming load by 13%. However, the hardness tests showed that this increase in the process temperature resulted in 4% decrease in the hardness of the composite bar.展开更多
Dissimilar friction stir welding between AZ31-O Mg and 6061-T6 Al alloys was investigated. 3 mm thick plates of aluminum and magnesium were used. Friction stir welding operations were performed at different rotation a...Dissimilar friction stir welding between AZ31-O Mg and 6061-T6 Al alloys was investigated. 3 mm thick plates of aluminum and magnesium were used. Friction stir welding operations were performed at different rotation and travel speeds. The rotation speeds varied from 600 to 1400 r/min, and the travel speed varied from 20 to 60 mm/min. Defect-free weld was obtained with a rotation speed of 1000 r/min and travel speed of 40 mm/min. Metallographic studies showed that the grain size in the stir zone is much finer than that in the base metals. Complex flow pattern was formed in the stir zone. Microhardness measurement revealed an uneven distribution in the stir zone. Tensile test results indicated that the tensile strength of the welded specimen is about 76% of AZ31 Mg alloy and 60% of the 6061 Al alloy in tensile strength. SEM fracture surface image of the welded specimen indicated that the welded specimen failed through brittle-mode fracture.展开更多
基金Project(12511075)supported by the Foundation of Heilongjiang Education Committee,China
文摘To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.
基金Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of ChinaProject(2011DFR50950)supported by the International Technical Cooperation,ChinaProject(2014DFG52810)supported by the Ministry of Science and Technology of China
文摘The hot deformation behavior of the homogenized Al?3.2Mg?0.4Er aluminum alloy was investigated at 573?723 K under strain rates of 0.001?1 s?1. On the basis of compression experimental results, an accurate phenomenological constitutive equation that coupled the effects of strain rate, deformation temperature and strain was modeled. Furthermore, a kinetic model of dynamic recrystallization and processing map were also presented. The results show that the flow stress of the studied Al?3.2Mg?0.4Er alloy can be predicted accurately using the proposed constitutive model. The evolution of microstructure and the volume fraction of dynamic recrystallization can be described exactly in terms of S-curves with the proposed kinetic model. Moreover, the processing maps for hot working at different strains were constructed, suggesting the optimum processing conditions for this alloy are 573 K, 0.001 s?1 and 723 K, 0.001?0.1 s?1.
文摘It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.
基金Project(12KJB430007)supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,ChinaProjects(CKJB201203,CKJA201202)supported by the Innovation Fund of Nanjing Institute of Technology ChinaProject(201311276001Z)supported by the Innovative Foundation Project for Student of Nanjing Institute of Technology,China
文摘A new method for synthesizing Mg-Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be significantly reduced. The SEM results indicate that a continuous and compact Mg-Al hydrotalcite coating is formed on the surface of Mg alloy after short time EF treatment. However, a long time treatment would make the coating partially exfoliate. The corrosion current density (Jcor ) of the coated sample (EF1+1 h) is approximately two orders of magnitude lower than that of Mg alloy substrate. The test of electrochemical impedance spectroscopy (EIS) and immersion corrosion also suggest that the coating can effectively protect Mg alloy against corrosion.
文摘Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.
文摘In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) tests as well as the shear punch test were employed to study the quality and strength of the bond between the two alloys. It was found that the process temperature was an important factor affecting the level of interfacial bonding, such that increasing the temperature from 250 to 300℃ has improved the strength by 37% and the thickness of the bond between the layers by 4.5%. Moreover, this temperature rise reduced the maximum required forming load by 13%. However, the hardness tests showed that this increase in the process temperature resulted in 4% decrease in the hardness of the composite bar.
文摘Dissimilar friction stir welding between AZ31-O Mg and 6061-T6 Al alloys was investigated. 3 mm thick plates of aluminum and magnesium were used. Friction stir welding operations were performed at different rotation and travel speeds. The rotation speeds varied from 600 to 1400 r/min, and the travel speed varied from 20 to 60 mm/min. Defect-free weld was obtained with a rotation speed of 1000 r/min and travel speed of 40 mm/min. Metallographic studies showed that the grain size in the stir zone is much finer than that in the base metals. Complex flow pattern was formed in the stir zone. Microhardness measurement revealed an uneven distribution in the stir zone. Tensile test results indicated that the tensile strength of the welded specimen is about 76% of AZ31 Mg alloy and 60% of the 6061 Al alloy in tensile strength. SEM fracture surface image of the welded specimen indicated that the welded specimen failed through brittle-mode fracture.