To evaluate the new designed cutting tools for high-efficiency milling of the hardened die steel SKD11,surface integrities of millers with different geometric structures are analyzed, considering the surface roughness...To evaluate the new designed cutting tools for high-efficiency milling of the hardened die steel SKD11,surface integrities of millers with different geometric structures are analyzed, considering the surface roughness, micrograph of chips, surface microhardness, residual stress and metallurgical texture of the surface layer. The in fluences of geometric characteristics of different cutting tools and their wear characteristics on the surface integrity are studied. Results show that the milling tool with rake angle; 5 of the hardened diesteel. The generation of saw-tooth chips is depressed when a reasonable positive rake angle is selected. And the compressive residual stress is induced on the machined surface in milling the hardened die steel. The occurrence of surface softening is postponed by increasing the clearance angle and reducing the tool flank wear.展开更多
Carbon fiber reinforced silicon carbide matrix(Cf/SiC)composites have the most potential application for high-temperature components of aerospace high-end equipment.However,high cutting temperature,rapid tool wear and...Carbon fiber reinforced silicon carbide matrix(Cf/SiC)composites have the most potential application for high-temperature components of aerospace high-end equipment.However,high cutting temperature,rapid tool wear and severe surface damages are the main problems in dry cutting Cf/SiC composites process.The feasibility study on cryogenic milling of Cf/SiC composites using liquid nitrogen as coolant is investigated.Influences of milling parameters and coolant on temperature,cutting force,surface quality and tool wear are investigated,which is compared with dry cutting.Experimental results reveal that the cutting temperature in cryogenic milling of Cf/SiC composites is reduced by about 40%—60%compared with dry cutting.The milling force increases gradually with the increase of spindle speed,feed rate,depth and width of milling in cryogenic milling process.In addition,the machined surface quality in cryogenic milling is superior to that in dry cutting process.Fiber fracture,matrix damage and fiber matrix debonding are main material removal mechanisms.Flank face wear is the main wear form of the polycrystalline diamond(PCD)end mills.The tool life is prolonged in the cryogenic milling process because the reduced temperature inhibits the softening of Co binder and phase transition of diamond in the PCD end mills.展开更多
文摘To evaluate the new designed cutting tools for high-efficiency milling of the hardened die steel SKD11,surface integrities of millers with different geometric structures are analyzed, considering the surface roughness, micrograph of chips, surface microhardness, residual stress and metallurgical texture of the surface layer. The in fluences of geometric characteristics of different cutting tools and their wear characteristics on the surface integrity are studied. Results show that the milling tool with rake angle; 5 of the hardened diesteel. The generation of saw-tooth chips is depressed when a reasonable positive rake angle is selected. And the compressive residual stress is induced on the machined surface in milling the hardened die steel. The occurrence of surface softening is postponed by increasing the clearance angle and reducing the tool flank wear.
基金the National Natural Science Foundation of China(Nos.51705249,51875285)the China Postdoctoral Science Foundation(No.2019M661823)+1 种基金the Aeronautical Science Foundation of China(No.2017ZE52047)the Defense Industrial Technology Development Program(No.JCKY2018605C018)。
文摘Carbon fiber reinforced silicon carbide matrix(Cf/SiC)composites have the most potential application for high-temperature components of aerospace high-end equipment.However,high cutting temperature,rapid tool wear and severe surface damages are the main problems in dry cutting Cf/SiC composites process.The feasibility study on cryogenic milling of Cf/SiC composites using liquid nitrogen as coolant is investigated.Influences of milling parameters and coolant on temperature,cutting force,surface quality and tool wear are investigated,which is compared with dry cutting.Experimental results reveal that the cutting temperature in cryogenic milling of Cf/SiC composites is reduced by about 40%—60%compared with dry cutting.The milling force increases gradually with the increase of spindle speed,feed rate,depth and width of milling in cryogenic milling process.In addition,the machined surface quality in cryogenic milling is superior to that in dry cutting process.Fiber fracture,matrix damage and fiber matrix debonding are main material removal mechanisms.Flank face wear is the main wear form of the polycrystalline diamond(PCD)end mills.The tool life is prolonged in the cryogenic milling process because the reduced temperature inhibits the softening of Co binder and phase transition of diamond in the PCD end mills.