Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The e...Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.展开更多
A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the mic...A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the microstructures and catalytic activities of these precursors during direct coal liquefaction was studied.The results show that the microstructure could be controlled through adjusting the synthesis temperature during the precipitation‐oxidation procedure,and that compounds synthesized at lower temperatures exhibit higher catalytic activity.As a result of their higher proportions ofγ‐FeOOH orα‐FeOOH crystalline phases,the unsupported iron–oxygen compounds synthesized at 20–30°C,which also had high specific surface areas and moisture levels,generate oil yields 4.5%–4.6%higher than those obtained with precursors synthesized at 70°C.It was also determined that higher oil yields were obtained when the catalytically‐active phase formed by the precursors during liquefaction(pyrrhotite,Fe1-xS)had smaller crystallites.Feed coal added as a carrier was found to efficiently disperse the active precursors,which in turn significantly improved the catalytic activity during coal liquefaction.展开更多
An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,c...An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.展开更多
The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electro...The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.展开更多
The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance ...The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa ·m1/2 , which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.展开更多
Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are ...Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe- Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhy- droxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrusta- tions on pillow basalts are 1-2mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrusta- tions are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+A1) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrother- malism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.展开更多
Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(...Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(Ⅲ) and organics were easily formed and degraded within reaction time. Compared with ,the degradation of complex, hydroxyl radicals acted weakly in Fenton or Photo-Fenton process. Hydroxyl radi'cals involved in Photo-Fenton process were deemed to be generated from the split decomposition of H2O2, photolysis of Fe_aq^3+, and degradation of hydrated Fe(Ⅳ)-complex but not traditional Fenton reaction. Experimental evidence to support this point was presented in this paper.展开更多
Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [...Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [π-cyclopentadienyl)iron] hexafluorophosphate ([bis(Cp-Fe)-biphenyl] (PF6)2 was synthesized by the ligand exchange reaction between ferrocene and biphenyl. The chemical structure was characterized with FTIR and ^1HNMR. The separation of ferrocenium monocation cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl] PF6) and dication [bis(Cp-Fe)-biphenyl] (PF6)2 was carried out by column chromatography. The photoactivity of initiating photopolyinerization of epoxide ER14221 was studied as a cationic photoinitiator. [Bis(Cp-Fe)-biphenyl] (PF6)2 can efficiently absorb radiation above 300nm and its photoactivity is higher than that of its monocation.展开更多
Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dith...Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dithiolato),a[FeFe]-hydrogenase model with a rigid and conjugate S-to-S bridge,was catalytically active for the selective photochemical reduction of CO2 to CO,while its analogous complex[(μ-edt)Fe2(CO)6](2,edt=ethane-1,2-dithiolato)was inactive.In this study,it was found that the turnover number of 1 for CO evolution reached 710 for the 1/[Ru(bpy)3]2+/BIH(BIH=1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole)system under optimal conditions over 4.5 h of visible-light irradiation,with a turnover frequency of 7.12 min−1 in the first hour,a high selectivity of 97%for CO,and an internal quantum yield of 2.8%.Interestingly,the catalytic selectivity of 1 can be adjusted and even completely switched in a facile manner between the photochemical reductions of CO2 to CO and of protons to H2 simply by adding different amounts of triethanolamine to the catalytic system.The electron transfer in the photocatalytic system was studied by steady-state fluorescence and transient absorption spectroscopy,and a plausible mechanism for the photocatalytic reaction was proposed.展开更多
The reduction of an aqueous solution of sodium molybdate by iron powder at low pH value (~0.83), in the presence of ethylenediaminetetraacetate (EDTA) ligand, gives the title compound [Fe(H 2O) 6][Mo 2O 4(EDTA)]·...The reduction of an aqueous solution of sodium molybdate by iron powder at low pH value (~0.83), in the presence of ethylenediaminetetraacetate (EDTA) ligand, gives the title compound [Fe(H 2O) 6][Mo 2O 4(EDTA)]·5H 2O 1, which was characterized by elemental analysis, IR and X ray single crystal diffraction techniques. Compound 1 crystallizes in monoclinic system, space group P2 1/c, C 10 H 34 N 2FeMo 2O 23 , M r=798.12, a=8.781(1), b=14.081(1), c=21.353(1) , β= 92\^688(1)°, V = 2637.2(3) 3, Z = 4, D c = 2.010 g·cm -3 , μ = 1.579 mm -1 , F (000)=1608, the final R =0.0530 and wR =0.1271 for 3312 observed reflections. The binuclear oxomolybdenum(V) anion and the six coordinated Fe(II) cation are linked to infinite three dimensional network through several hydrogen bonds towards different directions between crystal waters, Fe(II) cation and Mo(V) anion.展开更多
Hydroxyl radicals, superoxide anions and nitricoxide radicals are reactive species that can attack biomolecules such as DNA, lipids and proteins to cause many lifestyle-related diseases including hypertension and phot...Hydroxyl radicals, superoxide anions and nitricoxide radicals are reactive species that can attack biomolecules such as DNA, lipids and proteins to cause many lifestyle-related diseases including hypertension and photoaging. This study reports the synthesis of new copper-pyridoxine and iron-pyridoxine complexes. The complexes have been synthesized and characterized by molar conductances, IR, UV-Visible, mass spectrometry, melting points and magnetic moment datas. The molecular formula of the complex is found to be Fe(py ^-)2Cl.H2O. The pyH/pyligand is coordinated to copper and iron through N atom of the pyridine ring and O atom of 5'-CH2OH group. The Fe(III) complex is found to be paramagnetic with one unpaired electron. The antioxidant activities of the free ligand and its complexes were determined in vitro.展开更多
The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulp...The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulphuric acid where vanadium catalyst is deactivated and discharged, polluting the environment. The utilization of these materials requires their consolidation to proper sizes with regard to the next processing, as the most suitable method for joint consolidation is agglomeration. The present work explores the preliminary calculations for obtaining agglomerate and obtaining an alloy with high and low carbon content, through carbothermic and aluminothermic agglomerate reduction.展开更多
In this paper, the adsorption-desorption variations of trivalent La, Ce, Y and mixed rare earths are discussed. The curves of pH-rare earth element adsorption were very well fitted to the equation: InD =a+b pH. The se...In this paper, the adsorption-desorption variations of trivalent La, Ce, Y and mixed rare earths are discussed. The curves of pH-rare earth element adsorption were very well fitted to the equation: InD =a+b pH. The selectivity of RE (rare earth element) ions by the samples decreased in the following order: Ce> RE> La> Y, but the sequences were: La> Ce> Y on kaolinite and Y> La on amorphous iron oxide. Since the trivalent RE ions existed in the form of RE(OH)2+ in the solutions from pH < 5.45 to 7.0, the ratio of H+ displaced to RE3+ adsorbed in micromole was proposed to be about 2. The specific adsorption mechanism for RE was proposed to be that the RE ions complexed with oxide surface and the ion-surface complex of Ce3+ promoted oxidization on Mn hydroxide.展开更多
This study investigated the feasibility of using some natural clay minerals available in Egypt like kaolinite, bentonite, also using of iron oxide, rock phosphate and mixture of these types to minimize the rate of Ni,...This study investigated the feasibility of using some natural clay minerals available in Egypt like kaolinite, bentonite, also using of iron oxide, rock phosphate and mixture of these types to minimize the rate of Ni, Cu, Zn and Mn desorption from sewage soils and to evaluate the effect of these mixtures on Zn equivalent constant values before and after remediation. The obtained results indicated that all mixtures used were minimizing the rate of potential toxic elements (PTE's) release from sewage soils compared to control treatment. According to the decreasing order of different treatments, data indicated that application of the mixture treatment of bentonite, kaolinite and rock phosphate (RP) in sewage soils becomes the best treatment compared to other treatments used. However, the lowest and save Zn equivalent constant value which represents the hazard indicator in the study was observed in sewage soil treated with the mixture of bentonite and RP. The kinetic constants of Elovich, modified Freundlich and Hoerl equations, the best fitted models, were significantly decreased compared to control treatments with different percent of minimization according to type of pollutants and remediation material used. To understand the mechanisms of PTE's retained in treated sewage soil, distribution study was applied which showed that different pollutants studied were removed to hardly available form different mechanisms of PTE's undergo in treated sewage soils were discussed in the study.展开更多
基金Projects(51334008,51304243,51604160)supported by the National Natural Science Foundation of ChinaProject(2016zzts037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.
文摘A series of both unsupported and coal‐supported iron–oxygen compounds with gradual changes in microstructure were synthesized by a precipitation‐oxidation process at 20 to 70°C.The relationship between the microstructures and catalytic activities of these precursors during direct coal liquefaction was studied.The results show that the microstructure could be controlled through adjusting the synthesis temperature during the precipitation‐oxidation procedure,and that compounds synthesized at lower temperatures exhibit higher catalytic activity.As a result of their higher proportions ofγ‐FeOOH orα‐FeOOH crystalline phases,the unsupported iron–oxygen compounds synthesized at 20–30°C,which also had high specific surface areas and moisture levels,generate oil yields 4.5%–4.6%higher than those obtained with precursors synthesized at 70°C.It was also determined that higher oil yields were obtained when the catalytically‐active phase formed by the precursors during liquefaction(pyrrhotite,Fe1-xS)had smaller crystallites.Feed coal added as a carrier was found to efficiently disperse the active precursors,which in turn significantly improved the catalytic activity during coal liquefaction.
基金supported by the National Natural Science Foundation of China(21473073,21473074)‘‘13th Five-Year’’ Science and Technology Research of the Education Department of Jilin Province(2016403)+1 种基金the Development Project of Science and Technology of Jilin Province(20170101171JC,20180201068SF)the Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(201703)~~
文摘An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.
基金supported by the National Science Fund for Distinguished Young Scholars(21425729)from the National Natural Science Foundation of Chinathe National Special S&T Project on Water Pollution Control and Treatment(2017ZX07107002)+1 种基金China Postdoctoral Science Foundation(2018M640209)the Tianjin Science and Technology Support Key Projects(18YFZCSF00500)~~
文摘The electroactive materials used in the counter electrode(CE)are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells.The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species(I3^– or Co^3+)present in the electrolyte.The research hotspot of CE materials is seeking functional materials that display high efficiency,low cost,and good electrochemical stability and can substitute the benchmark platinum electrode.Chalcogen compounds of cobalt,nickel,and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties,similar energies of adsorption of I atoms as platinum,excellent catalytic activities,and good chemical stabilities.In this review,we trace the developments and performances of chalcogen compounds of iron,cobalt,and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances.We then highlight the optimization strategies for further improving their performances,such as fabrication of architectures,regulation of the components,synthesis of composites containing carbon materials,and elemental doping.
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa ·m1/2 , which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.
基金supported by the National Key Basic Research Program of China (2013CB429700)the Shandong Province Natural Science Foundation for Distinguished Young Scholars (JQ200913)+1 种基金the National Natural Science Foundation of China (40830849)the National Special Fund for the Eleventh Five-Year Plan of COMRA (DY125-12-R-02 and DY125-11-R-05)
文摘Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe- Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhy- droxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrusta- tions on pillow basalts are 1-2mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrusta- tions are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+A1) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrother- malism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.
基金National Natural Science Foundation of China(No.20176053)
文摘Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(Ⅲ) and organics were easily formed and degraded within reaction time. Compared with ,the degradation of complex, hydroxyl radicals acted weakly in Fenton or Photo-Fenton process. Hydroxyl radi'cals involved in Photo-Fenton process were deemed to be generated from the split decomposition of H2O2, photolysis of Fe_aq^3+, and degradation of hydrated Fe(Ⅳ)-complex but not traditional Fenton reaction. Experimental evidence to support this point was presented in this paper.
基金Supported by the National Natural Science Foundation of China (20676012).
文摘Ferrocenium monocations as photoinitiators for cationic photopolymerization suffer from a limitation of low absorption and low reactivity under high-pressure Hg lamp. Here, a ferrocenium dication salt, biphenyl bis [π-cyclopentadienyl)iron] hexafluorophosphate ([bis(Cp-Fe)-biphenyl] (PF6)2 was synthesized by the ligand exchange reaction between ferrocene and biphenyl. The chemical structure was characterized with FTIR and ^1HNMR. The separation of ferrocenium monocation cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl] PF6) and dication [bis(Cp-Fe)-biphenyl] (PF6)2 was carried out by column chromatography. The photoactivity of initiating photopolyinerization of epoxide ER14221 was studied as a cationic photoinitiator. [Bis(Cp-Fe)-biphenyl] (PF6)2 can efficiently absorb radiation above 300nm and its photoactivity is higher than that of its monocation.
文摘Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dithiolato),a[FeFe]-hydrogenase model with a rigid and conjugate S-to-S bridge,was catalytically active for the selective photochemical reduction of CO2 to CO,while its analogous complex[(μ-edt)Fe2(CO)6](2,edt=ethane-1,2-dithiolato)was inactive.In this study,it was found that the turnover number of 1 for CO evolution reached 710 for the 1/[Ru(bpy)3]2+/BIH(BIH=1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole)system under optimal conditions over 4.5 h of visible-light irradiation,with a turnover frequency of 7.12 min−1 in the first hour,a high selectivity of 97%for CO,and an internal quantum yield of 2.8%.Interestingly,the catalytic selectivity of 1 can be adjusted and even completely switched in a facile manner between the photochemical reductions of CO2 to CO and of protons to H2 simply by adding different amounts of triethanolamine to the catalytic system.The electron transfer in the photocatalytic system was studied by steady-state fluorescence and transient absorption spectroscopy,and a plausible mechanism for the photocatalytic reaction was proposed.
文摘The reduction of an aqueous solution of sodium molybdate by iron powder at low pH value (~0.83), in the presence of ethylenediaminetetraacetate (EDTA) ligand, gives the title compound [Fe(H 2O) 6][Mo 2O 4(EDTA)]·5H 2O 1, which was characterized by elemental analysis, IR and X ray single crystal diffraction techniques. Compound 1 crystallizes in monoclinic system, space group P2 1/c, C 10 H 34 N 2FeMo 2O 23 , M r=798.12, a=8.781(1), b=14.081(1), c=21.353(1) , β= 92\^688(1)°, V = 2637.2(3) 3, Z = 4, D c = 2.010 g·cm -3 , μ = 1.579 mm -1 , F (000)=1608, the final R =0.0530 and wR =0.1271 for 3312 observed reflections. The binuclear oxomolybdenum(V) anion and the six coordinated Fe(II) cation are linked to infinite three dimensional network through several hydrogen bonds towards different directions between crystal waters, Fe(II) cation and Mo(V) anion.
文摘Hydroxyl radicals, superoxide anions and nitricoxide radicals are reactive species that can attack biomolecules such as DNA, lipids and proteins to cause many lifestyle-related diseases including hypertension and photoaging. This study reports the synthesis of new copper-pyridoxine and iron-pyridoxine complexes. The complexes have been synthesized and characterized by molar conductances, IR, UV-Visible, mass spectrometry, melting points and magnetic moment datas. The molecular formula of the complex is found to be Fe(py ^-)2Cl.H2O. The pyH/pyligand is coordinated to copper and iron through N atom of the pyridine ring and O atom of 5'-CH2OH group. The Fe(III) complex is found to be paramagnetic with one unpaired electron. The antioxidant activities of the free ligand and its complexes were determined in vitro.
文摘The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulphuric acid where vanadium catalyst is deactivated and discharged, polluting the environment. The utilization of these materials requires their consolidation to proper sizes with regard to the next processing, as the most suitable method for joint consolidation is agglomeration. The present work explores the preliminary calculations for obtaining agglomerate and obtaining an alloy with high and low carbon content, through carbothermic and aluminothermic agglomerate reduction.
文摘In this paper, the adsorption-desorption variations of trivalent La, Ce, Y and mixed rare earths are discussed. The curves of pH-rare earth element adsorption were very well fitted to the equation: InD =a+b pH. The selectivity of RE (rare earth element) ions by the samples decreased in the following order: Ce> RE> La> Y, but the sequences were: La> Ce> Y on kaolinite and Y> La on amorphous iron oxide. Since the trivalent RE ions existed in the form of RE(OH)2+ in the solutions from pH < 5.45 to 7.0, the ratio of H+ displaced to RE3+ adsorbed in micromole was proposed to be about 2. The specific adsorption mechanism for RE was proposed to be that the RE ions complexed with oxide surface and the ion-surface complex of Ce3+ promoted oxidization on Mn hydroxide.
文摘This study investigated the feasibility of using some natural clay minerals available in Egypt like kaolinite, bentonite, also using of iron oxide, rock phosphate and mixture of these types to minimize the rate of Ni, Cu, Zn and Mn desorption from sewage soils and to evaluate the effect of these mixtures on Zn equivalent constant values before and after remediation. The obtained results indicated that all mixtures used were minimizing the rate of potential toxic elements (PTE's) release from sewage soils compared to control treatment. According to the decreasing order of different treatments, data indicated that application of the mixture treatment of bentonite, kaolinite and rock phosphate (RP) in sewage soils becomes the best treatment compared to other treatments used. However, the lowest and save Zn equivalent constant value which represents the hazard indicator in the study was observed in sewage soil treated with the mixture of bentonite and RP. The kinetic constants of Elovich, modified Freundlich and Hoerl equations, the best fitted models, were significantly decreased compared to control treatments with different percent of minimization according to type of pollutants and remediation material used. To understand the mechanisms of PTE's retained in treated sewage soil, distribution study was applied which showed that different pollutants studied were removed to hardly available form different mechanisms of PTE's undergo in treated sewage soils were discussed in the study.