期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
铝青铜-Ti_(3)AlC_(2)复合材料摩擦学性能与工程耐冲击性能研究
1
作者 金孔杰 胡月铮 +5 位作者 谈辉 王帅 韩明 田金山 乔竹辉 杨军 《摩擦学学报(中英文)》 北大核心 2025年第1期35-45,共11页
针对铜基换挡摩擦片在极限工况下易发生强烈黏着磨损,继而导致烧蚀与磨损失效的问题,研制了铝青铜-Ti_(3)AlC_(2)复合材料及其工程样件.测试了样件在不同工况下的摩擦系数、磨损率、闭锁冲击系数、传递扭矩、耐振动冲击次数及耐热冲击系... 针对铜基换挡摩擦片在极限工况下易发生强烈黏着磨损,继而导致烧蚀与磨损失效的问题,研制了铝青铜-Ti_(3)AlC_(2)复合材料及其工程样件.测试了样件在不同工况下的摩擦系数、磨损率、闭锁冲击系数、传递扭矩、耐振动冲击次数及耐热冲击系数,并分析了力学性能、磨损表面状态及摩擦磨损机理.结果表明:Ti_(3)AlC_(2)能够提高铝青铜基体的硬度和抗压强度,并减弱黏着磨损,从而提高复合材料的耐磨性能和耐热冲击性能;Ti3AlC2可使换挡摩擦片具备稳定的传递扭矩,并降低其在重载荷与高转速下的摩擦冲击;过量的Ti_(3)AlC_(2)会降低复合材料的组织均匀性和结合力,并对耐磨性能和耐振动冲击性能造成不利影响;通过优化Ti_(3)AlC_(2)含量可使复合材料兼顾良好的力学性能、摩擦学性能及耐冲击性能,进而提升换挡摩擦片在极限工况下对摩擦冲击、热冲击及振动冲击的承载能力. 展开更多
关键词 青铜 钛铝碳复合材料 摩擦学性能 耐冲击性能 工程应用
在线阅读 下载PDF
Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate 被引量:6
2
作者 K.JESHURUN LIJAY J.DAVID RAJA SELVAM +1 位作者 I.DINAHARAN S.J.VIJAY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1791-1800,共10页
Aluminum alloys AA6061 reinforced with various amounts (0, 2.5% and 5%, mass fraction) of TiC particles were synthesized by the in situ reaction of inorganic salt K2TiF6 and ceramic particle SiC with molten aluminum... Aluminum alloys AA6061 reinforced with various amounts (0, 2.5% and 5%, mass fraction) of TiC particles were synthesized by the in situ reaction of inorganic salt K2TiF6 and ceramic particle SiC with molten aluminum. The casting was carried out at an elevated temperature and held for a longer duration to decompose SiC to release carbon atoms. X-ray diffraction patterns of the prepared AMCs clearly revealed the formation of TiC particles without the occurrence of any other intermetallic compounds. The microstructure of the prepared AA6061/TiC AMCs was studied using field emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The in situ formed TiC particles were characterized with homogeneous distribution, clear interface, good bonding and various shapes such as cubic, spherical and hexagonal. EBSD maps showed the grain refinement action of TiC particles on the produced composites. The formation of TiC particles boosted the microhardness and ultimate tensile strength (UTS) of the AMCs. 展开更多
关键词 aluminum matrix composite titanium carbide electron backscatter diffraction CASTING microstructure mechanical properties
在线阅读 下载PDF
Comparison of wear behaviour of LM13 Al−Si alloy based composites reinforced with synthetic(B_(4)C)and natural(ilmenite)ceramic particles 被引量:5
3
作者 Rahul GUPTA Tarun NANDA O.P.PANDEY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第12期3613-3625,共13页
Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used ... Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites. 展开更多
关键词 aluminium matrix composites ILMENITE boron carbide PARTICLE-REINFORCEMENT wear test TRIBOLAYER XRD analysis SEM−EDS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部