To solve the problem of a low coal-loading rate being exhibited by the drum shearer on Chinese thin coal seams,systematic tests and research were performed to study the pivotal factors’influences on drum coal-loading...To solve the problem of a low coal-loading rate being exhibited by the drum shearer on Chinese thin coal seams,systematic tests and research were performed to study the pivotal factors’influences on drum coal-loading rate using a model test method.The effects of the drum hub diameter,cutting depth,vane helix angle,drum rotation speed and hauling speed on drum coal-loading rate were determined under circumstances of coal-loading with drum ejection and pushing modes,and reasons for these phenomena were analyzed.The results indicate that the influence of the drum cutting depth on the drum coal-loading rate is the most significant.The parameters of hub diameter,drum rotation speed and hauling speed can influence the drum coal-loading rate by cutting the coals’filling rate in the drum.The parameters of vane helix angle and drum rotation speed can influence drum coal-loading rates by influencing the ratio of cutting coals’tangential and axial speed in the drum.The coal-loading rate with drum ejection is clearly higher than that observed with drum pushing.Research in this study can provide support to design the drum structure and select drum operational parameters for a thin coal seam shearer.展开更多
Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the...Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.展开更多
基金Project(2012AA062104)supported by the National High Technology Research and Development Program of ChinaProject(51704178)supported by the National Natural Science Foundation of China+1 种基金Project(ZR2017MEE034)supported by Natural Science Foundation of Shandong Province,ChinaProject(2018T110700)supported by China Postdoctoral Science Foundation
文摘To solve the problem of a low coal-loading rate being exhibited by the drum shearer on Chinese thin coal seams,systematic tests and research were performed to study the pivotal factors’influences on drum coal-loading rate using a model test method.The effects of the drum hub diameter,cutting depth,vane helix angle,drum rotation speed and hauling speed on drum coal-loading rate were determined under circumstances of coal-loading with drum ejection and pushing modes,and reasons for these phenomena were analyzed.The results indicate that the influence of the drum cutting depth on the drum coal-loading rate is the most significant.The parameters of hub diameter,drum rotation speed and hauling speed can influence the drum coal-loading rate by cutting the coals’filling rate in the drum.The parameters of vane helix angle and drum rotation speed can influence drum coal-loading rates by influencing the ratio of cutting coals’tangential and axial speed in the drum.The coal-loading rate with drum ejection is clearly higher than that observed with drum pushing.Research in this study can provide support to design the drum structure and select drum operational parameters for a thin coal seam shearer.
基金the Youth Foundation of China University of Mining & Technology (No.2009A056)the Tribology Science Fund from State Key Laboratory of Tribology at Tsinghua University (No.SKLTKF08A01)+1 种基金the National Natural Science Foundation of China (Nos.50905180 and 51005234)the National Science and Technology Pillar Program in the Eleventh Five-Year Plan Period (No.2008BAB36B02)
文摘Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.