This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithm...This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.展开更多
In recent years, with the rapid development of molecular biology, molecular markers have been widely used in genetic breeding of various crops including cowpea. However, molecular researches in cowpea are lack of syst...In recent years, with the rapid development of molecular biology, molecular markers have been widely used in genetic breeding of various crops including cowpea. However, molecular researches in cowpea are lack of systematic summary. This review presents an overview of accomplishments on different aspects of molecular markers in cowpea genetic breeding, such as genetic diversity analysis, genetic linkage map construction, QTL mapping, etc. Furthermore, it provides the discussion of some existing problems about molecular markers applied in cowpea breeding and the prospect of the future development. The authors find that SSR is the most frequently used molecular marker, while SNP has not been used in the genetic diversity analysis of cowpea. And the authors also conclude that more QTL of cowpea should be located and more molecular markers linked to resistance gene should be found. This will be useful for scientists and breeders to research cowpea with the aid of molecular markers, thus accelerating improvement of cowpea varieties.展开更多
This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU ( High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tu...This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU ( High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the eenterline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.展开更多
Previously an AGAMOUS gene homologue PpMADS4 and a FRUITFULL gene homologue PpMADS6 were isolated from peach (Prunus persica), and both genes were shown to express in the developing floral and fruits. To gain insight ...Previously an AGAMOUS gene homologue PpMADS4 and a FRUITFULL gene homologue PpMADS6 were isolated from peach (Prunus persica), and both genes were shown to express in the developing floral and fruits. To gain insight into their function, the two genes were constitutively expressed in Arabidopsis thaliana and their effects on plant growth and floral organ development were studied in this work. The transgenic plants all displayed early flowering and conversion of inflorescence to floral meristem. However, the two genes had different effects on the floral organ structures in A. thaliana. The transgenic plants overexpressing PpMADS4 displayed homeotic conversion of floral organs, and par- ticularly the perianth abscission was inhibited. The plants overexpressing PpMADS6 showed early flowering, produced higher number of carpels, petals, and stamens than nontransgenic plants, and pod shatter was prevented; significantly, the transgenic plants yielded more than one siliques from a single flower. A SSR molecular marker was developed for PpMADS4, and it was then assigned into the G5 linkage group of Prunus sp. Both PpMADS4 and PpMADS6 genes were located at the same region in the G5 linkage group. Our results showed the potential application of these two MADS box genes for crop and fruit tree improvement.展开更多
Non-Mendelian segregation of markers, known as distorted segregation, is a common biological phenomenon. Although segregation distortion affects the estimation of map distances and the results of quantitative trait lo...Non-Mendelian segregation of markers, known as distorted segregation, is a common biological phenomenon. Although segregation distortion affects the estimation of map distances and the results of quantitative trait loci (QTL) mapping, the effects of distorted markers are often ignored in the construction of linkage maps and in QTL mapping. Recently, we have developed a multipoint method via a Hidden Markov chain method to reconstruct linkage maps in an F2 population that corrects for bias of map distances between distorted markers. In this article, the method is extended to cover backcross, doubled haploid and recombinant inbred line (RIL) populations. The results from simulated experiments show that: (1) the degree that two linked segregation distortion loci (SDL) affect the estimation of map distances increases as SDL heritability and interval length between adjacent markers increase, whereas sample size has little effect on the bias; (2) two linked SDL result in the underesti- mation of linkage distances for most cases, overestimation for an additive model with opposite additive effects, and unbiased estimation for an epistatic model with negative additive-by-additive effects; (3) the proposed method can obtain the unbiased estimation of linkage distance. This new method was applied to a rice RIL population with severely distorted segregation to reconstruct the linkage maps, and a bootstrap method was used to obtain 95% confidence intervals of map distances. The results from real data analysis further demonstrate the utility of our method, which provides a foundation for the inheritance analysis of quantitative and viability traits.展开更多
文摘This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method.
文摘In recent years, with the rapid development of molecular biology, molecular markers have been widely used in genetic breeding of various crops including cowpea. However, molecular researches in cowpea are lack of systematic summary. This review presents an overview of accomplishments on different aspects of molecular markers in cowpea genetic breeding, such as genetic diversity analysis, genetic linkage map construction, QTL mapping, etc. Furthermore, it provides the discussion of some existing problems about molecular markers applied in cowpea breeding and the prospect of the future development. The authors find that SSR is the most frequently used molecular marker, while SNP has not been used in the genetic diversity analysis of cowpea. And the authors also conclude that more QTL of cowpea should be located and more molecular markers linked to resistance gene should be found. This will be useful for scientists and breeders to research cowpea with the aid of molecular markers, thus accelerating improvement of cowpea varieties.
文摘This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU ( High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the eenterline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.
基金the National Natural Science Foundation of China (Grant No. 30500395)the National High Technology Research and Development Program of China (Grant Nos. 2006AA10Z130 and 2006AA100108-3-7) Beijing Natural Science Foundation (Grant No. 5073046)
文摘Previously an AGAMOUS gene homologue PpMADS4 and a FRUITFULL gene homologue PpMADS6 were isolated from peach (Prunus persica), and both genes were shown to express in the developing floral and fruits. To gain insight into their function, the two genes were constitutively expressed in Arabidopsis thaliana and their effects on plant growth and floral organ development were studied in this work. The transgenic plants all displayed early flowering and conversion of inflorescence to floral meristem. However, the two genes had different effects on the floral organ structures in A. thaliana. The transgenic plants overexpressing PpMADS4 displayed homeotic conversion of floral organs, and par- ticularly the perianth abscission was inhibited. The plants overexpressing PpMADS6 showed early flowering, produced higher number of carpels, petals, and stamens than nontransgenic plants, and pod shatter was prevented; significantly, the transgenic plants yielded more than one siliques from a single flower. A SSR molecular marker was developed for PpMADS4, and it was then assigned into the G5 linkage group of Prunus sp. Both PpMADS4 and PpMADS6 genes were located at the same region in the G5 linkage group. Our results showed the potential application of these two MADS box genes for crop and fruit tree improvement.
基金Supported by the 973 program (Grant No. 2006CB101708)the National Natural Science Foundation of China (Grant Nos. 30470998 and 30671333)+5 种基金Jiangsu Natural Science Foundation (Grant No. BK2005087)Program for Changjiang Scholars and Innovative Research Team in University and Program for New Centenary Excellent Talent in University (Grant No. NCET-05-0489)863 Program (Grant No. 2006AA10Z1E5)the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education and Personnel Ministrythe Talent Foundation of Nanjing Agricultural University.
文摘Non-Mendelian segregation of markers, known as distorted segregation, is a common biological phenomenon. Although segregation distortion affects the estimation of map distances and the results of quantitative trait loci (QTL) mapping, the effects of distorted markers are often ignored in the construction of linkage maps and in QTL mapping. Recently, we have developed a multipoint method via a Hidden Markov chain method to reconstruct linkage maps in an F2 population that corrects for bias of map distances between distorted markers. In this article, the method is extended to cover backcross, doubled haploid and recombinant inbred line (RIL) populations. The results from simulated experiments show that: (1) the degree that two linked segregation distortion loci (SDL) affect the estimation of map distances increases as SDL heritability and interval length between adjacent markers increase, whereas sample size has little effect on the bias; (2) two linked SDL result in the underesti- mation of linkage distances for most cases, overestimation for an additive model with opposite additive effects, and unbiased estimation for an epistatic model with negative additive-by-additive effects; (3) the proposed method can obtain the unbiased estimation of linkage distance. This new method was applied to a rice RIL population with severely distorted segregation to reconstruct the linkage maps, and a bootstrap method was used to obtain 95% confidence intervals of map distances. The results from real data analysis further demonstrate the utility of our method, which provides a foundation for the inheritance analysis of quantitative and viability traits.