Based on the conflict graph model which is formulated as a binary integer optimization problem, a resource allocation method to support device-to-device (D2D) communications in ceUular networks is proposed. First, a...Based on the conflict graph model which is formulated as a binary integer optimization problem, a resource allocation method to support device-to-device (D2D) communications in ceUular networks is proposed. First, a frequency resource assignment algorithm is presented which assigns each D2D link one frequency resource block. For this algorithm, frequency resource blocks are assigned so that the frequency resource spatial reuse opportunities in the cellular networks can be fully exploited. Then a slot scheduling algorithm is presented which schedules time slots among D2D links assigned the same frequency resource block. For this algorithm, time slot resources are scheduled so that the proportional fairness among D2D links which are assigned the same frequency resource block can be achieved. The performance of the proposed method is evaluated via computer simulations. The simulation results show that the proposed method can well support D2D communications in cellular networks.展开更多
Several channel de-allocation schemes for GSM/GPRS(General Packet Radio Service) networks are proposed in this paper. For DRA (Dynamical Resource Allocation) with de-allocation mechanism, if a new voice call arrives a...Several channel de-allocation schemes for GSM/GPRS(General Packet Radio Service) networks are proposed in this paper. For DRA (Dynamical Resource Allocation) with de-allocation mechanism, if a new voice call arrives and finds that all the channels are busy,then one of the GPRS packets which occupy more than one channel for data transmission may release a channel for the new voice call. This paper presents 5 de-allocation mechanisms, i.e.DA-RANDOM, DA-RICHEST, DA-POOREST, DA-OLDEST and DA-YOUNGEST, to select the GPRS packet for releasing the appropriate channel. Simulation results show that DAOLDEST achieves the best performance, especially in packets blocking probability, among all the de-allocation schemes. Although the performance of the proposed de-allocation schemes is not significantly different, they are all much better than that of the scheme without de-allocation.展开更多
In the future fifth generation(5G) systems,non-orthogonal multiple access(NOMA) is a promising technology that can greatly enhance the network capacity compared to orthogonal multiple access(OMA) .In this paper,we pro...In the future fifth generation(5G) systems,non-orthogonal multiple access(NOMA) is a promising technology that can greatly enhance the network capacity compared to orthogonal multiple access(OMA) .In this paper,we propose a novel random access(RA) and resource allocation scheme for the coexistence of NOMA-based and OMAbased machine-to-machine(M2M) communications,which aims at improving the number of successful data packet transmissions and guaranteeing the quality of service(Qo S) (e.g.,the minimum data rate requirement) for M2 M communications.The algorithm of joint user equipment(UE) paring and power allocation is proposed for the coexisting RA(i.e.,the coexistence of NOMA-based RA and OMA-based RA) .The resource allocation for the coexisting RA is investigated,thus improving the number of successful data packet transmissions by more efficiently using the radio resources.Simulation results demonstrate that the proposed RA and resource allocation scheme outperforms the conventional RA in terms of the number of successful data packet transmissions,thus is a promising technology in future M2 M communications.展开更多
High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
The pursuit of high data rate and assurance of quality of experience(QoE) for end users represent the main goals of future wireless communication systems.By introducing MOS(Mean Opinion Score) based assessment models ...The pursuit of high data rate and assurance of quality of experience(QoE) for end users represent the main goals of future wireless communication systems.By introducing MOS(Mean Opinion Score) based assessment models for different types of applications,this paper proposed novel QoE-oriented radio resource allocation(RRA) algorithms for multiuser-multiservice femtocell networks.An optimal QoE-oriented RRA strategy is first analyzed using time-sharing method which is applicable to best effort applications.RRA algorithms based on the cross-layer architecture are then proposed for all types of applications by considering parameters extracted from different layers of networking protocols.In the proposed algorithms,a priority mechanism is employed to ensure fairness.Simulation results show that the proposed algorithms can significantly improve the overall perceived quality from the users' perspective in comparison with traditional Quality of Service(QoS)oriented algorithms.展开更多
Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processin...Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processing. Such system can help accelerate research and development of future wireless network, especially in the case of cellular/Wi-Fi co-existing networks. This platform is based on the Intel general-purpose processor and the universal software radio peripheral(USRP) radio front end. The design including the physical layer implementations is purely software and is optimized for real-time signal processing on the general purpose processor. In the lab experiment, this platform supports baseband rate up to 700 Mbps with 2 transmitters in 80 MHz bandwidth. A cellular-Wi-Fi signaling interface between the Wi-Fi access point(AP) and the 5G core network is also developed and validated as an example for wireless resource allocation.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.SS2014AA012103)the National Natural Science Foundation of China(No.61001103)
文摘Based on the conflict graph model which is formulated as a binary integer optimization problem, a resource allocation method to support device-to-device (D2D) communications in ceUular networks is proposed. First, a frequency resource assignment algorithm is presented which assigns each D2D link one frequency resource block. For this algorithm, frequency resource blocks are assigned so that the frequency resource spatial reuse opportunities in the cellular networks can be fully exploited. Then a slot scheduling algorithm is presented which schedules time slots among D2D links assigned the same frequency resource block. For this algorithm, time slot resources are scheduled so that the proportional fairness among D2D links which are assigned the same frequency resource block can be achieved. The performance of the proposed method is evaluated via computer simulations. The simulation results show that the proposed method can well support D2D communications in cellular networks.
基金Supported by the NSFC/RGC joint research scheme (No.60218001/N_HKUST617-02).
文摘Several channel de-allocation schemes for GSM/GPRS(General Packet Radio Service) networks are proposed in this paper. For DRA (Dynamical Resource Allocation) with de-allocation mechanism, if a new voice call arrives and finds that all the channels are busy,then one of the GPRS packets which occupy more than one channel for data transmission may release a channel for the new voice call. This paper presents 5 de-allocation mechanisms, i.e.DA-RANDOM, DA-RICHEST, DA-POOREST, DA-OLDEST and DA-YOUNGEST, to select the GPRS packet for releasing the appropriate channel. Simulation results show that DAOLDEST achieves the best performance, especially in packets blocking probability, among all the de-allocation schemes. Although the performance of the proposed de-allocation schemes is not significantly different, they are all much better than that of the scheme without de-allocation.
基金supported by the National Natural Science Foundation of China(61501056)National Science and Technology Major Project of China(No.2016ZX03001012)the Research Fund of ZTE Corporation
文摘In the future fifth generation(5G) systems,non-orthogonal multiple access(NOMA) is a promising technology that can greatly enhance the network capacity compared to orthogonal multiple access(OMA) .In this paper,we propose a novel random access(RA) and resource allocation scheme for the coexistence of NOMA-based and OMAbased machine-to-machine(M2M) communications,which aims at improving the number of successful data packet transmissions and guaranteeing the quality of service(Qo S) (e.g.,the minimum data rate requirement) for M2 M communications.The algorithm of joint user equipment(UE) paring and power allocation is proposed for the coexisting RA(i.e.,the coexistence of NOMA-based RA and OMA-based RA) .The resource allocation for the coexisting RA is investigated,thus improving the number of successful data packet transmissions by more efficiently using the radio resources.Simulation results demonstrate that the proposed RA and resource allocation scheme outperforms the conventional RA in terms of the number of successful data packet transmissions,thus is a promising technology in future M2 M communications.
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.
基金supported in part by the National Nature Science Foundation of China under Grant 61372117the 863 project under grant No.2014AA01A701the National Key Technology Support Program under grant No.2012BAH41F03
文摘The pursuit of high data rate and assurance of quality of experience(QoE) for end users represent the main goals of future wireless communication systems.By introducing MOS(Mean Opinion Score) based assessment models for different types of applications,this paper proposed novel QoE-oriented radio resource allocation(RRA) algorithms for multiuser-multiservice femtocell networks.An optimal QoE-oriented RRA strategy is first analyzed using time-sharing method which is applicable to best effort applications.RRA algorithms based on the cross-layer architecture are then proposed for all types of applications by considering parameters extracted from different layers of networking protocols.In the proposed algorithms,a priority mechanism is employed to ensure fairness.Simulation results show that the proposed algorithms can significantly improve the overall perceived quality from the users' perspective in comparison with traditional Quality of Service(QoS)oriented algorithms.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61671436the Science and Technology Commission Foundation of Shanghai under Grant No. 15511102602, 16511104204
文摘Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processing. Such system can help accelerate research and development of future wireless network, especially in the case of cellular/Wi-Fi co-existing networks. This platform is based on the Intel general-purpose processor and the universal software radio peripheral(USRP) radio front end. The design including the physical layer implementations is purely software and is optimized for real-time signal processing on the general purpose processor. In the lab experiment, this platform supports baseband rate up to 700 Mbps with 2 transmitters in 80 MHz bandwidth. A cellular-Wi-Fi signaling interface between the Wi-Fi access point(AP) and the 5G core network is also developed and validated as an example for wireless resource allocation.