In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanica...In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanical system as well as the symbolic computation implementation of this procedure is reviewed and projected into the Delta robot. Based on the established linear graph representation the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple so that actuator control and trajectory tracking can be directly realized.Two practical motions the circular path and Adept motion are simulated for the validation of symbolic solutions respectively.Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.展开更多
Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output s...Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.展开更多
基金The National Natural Science Foundation of China(No.51205208)
文摘In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanical system as well as the symbolic computation implementation of this procedure is reviewed and projected into the Delta robot. Based on the established linear graph representation the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple so that actuator control and trajectory tracking can be directly realized.Two practical motions the circular path and Adept motion are simulated for the validation of symbolic solutions respectively.Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.
文摘Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.