随着农业领域人工智能的研究不断深入,农业文本中命名实体识别是其他任务开展的基础之一。鉴于农业领域缺乏公开语料库,本文构建了自己的农业文本的注释语料库。针对目前存在的文本语义表达不足、缺乏语境特征、词向量多样性表达困难等...随着农业领域人工智能的研究不断深入,农业文本中命名实体识别是其他任务开展的基础之一。鉴于农业领域缺乏公开语料库,本文构建了自己的农业文本的注释语料库。针对目前存在的文本语义表达不足、缺乏语境特征、词向量多样性表达困难等问题,本文提出了基于XLNet(Generalized Autoregressive Pretraining for Language Understanding,XLNet)的农业命名实体识别模型XLNet-IDCNN-CRF。嵌入层XLNet对于输入文本进行向量化表示,丰富文本的语义信息,缓解一词多义问题,通过编码层迭代膨胀卷积神经网络(Iterated Dilated Convolutional Neural Network,IDCNN)并行计算减少训练时间,获取文本特征信息,结合起来输入到输出层条件随机场模型(Conditional Random Field,CRF)识别标签信息,输出最优序列。本文在自建语料库上准确率达到95.58%,召回率92.36%,F1值93.91%,对比优于其他模型。实验结果表明,XLNet-IDCNNCRF模型能够较好地完成农业命名实体识别任务。展开更多
针对中文命名实体识别经典的BiLSTM-CRF(bi-directional long short-term memory-conditional random field)模型存在的嵌入向量无法表征多义词、编码层建模时注意力分散以及缺少对局部空间特征捕获的问题,本文提出一种融合BERT-BiGRU-M...针对中文命名实体识别经典的BiLSTM-CRF(bi-directional long short-term memory-conditional random field)模型存在的嵌入向量无法表征多义词、编码层建模时注意力分散以及缺少对局部空间特征捕获的问题,本文提出一种融合BERT-BiGRU-MHA-CRF和BERT-IDCNN-CRF模型优势的集成模型完成命名实体识别.该方法利用裁剪的BERT模型得到包含上下文信息的语义向量;再将语义向量输入BiGRU-MHA(bi-directional gated recurrent unit-multi head attention)及IDCNN(Iterated Dilated Convolutional Neural Network)网络.前者捕获输入序列的时序特征并能够根据字符重要性分配权值,后者主要捕获输入的空间特征,利用平均集成方式将捕获到的特征融合;最后通过CRF层获得全局最优的标注序列.集成模型在人民日报和微软亚洲研究院(Microsoft research asia, MSRA)数据集上的F1值分别达到了96.09%和95.01%.相较于单个模型分别提高了0.74%和0.55%以上,验证了本文方法的有效性.展开更多
文摘随着农业领域人工智能的研究不断深入,农业文本中命名实体识别是其他任务开展的基础之一。鉴于农业领域缺乏公开语料库,本文构建了自己的农业文本的注释语料库。针对目前存在的文本语义表达不足、缺乏语境特征、词向量多样性表达困难等问题,本文提出了基于XLNet(Generalized Autoregressive Pretraining for Language Understanding,XLNet)的农业命名实体识别模型XLNet-IDCNN-CRF。嵌入层XLNet对于输入文本进行向量化表示,丰富文本的语义信息,缓解一词多义问题,通过编码层迭代膨胀卷积神经网络(Iterated Dilated Convolutional Neural Network,IDCNN)并行计算减少训练时间,获取文本特征信息,结合起来输入到输出层条件随机场模型(Conditional Random Field,CRF)识别标签信息,输出最优序列。本文在自建语料库上准确率达到95.58%,召回率92.36%,F1值93.91%,对比优于其他模型。实验结果表明,XLNet-IDCNNCRF模型能够较好地完成农业命名实体识别任务。
文摘针对中文命名实体识别经典的BiLSTM-CRF(bi-directional long short-term memory-conditional random field)模型存在的嵌入向量无法表征多义词、编码层建模时注意力分散以及缺少对局部空间特征捕获的问题,本文提出一种融合BERT-BiGRU-MHA-CRF和BERT-IDCNN-CRF模型优势的集成模型完成命名实体识别.该方法利用裁剪的BERT模型得到包含上下文信息的语义向量;再将语义向量输入BiGRU-MHA(bi-directional gated recurrent unit-multi head attention)及IDCNN(Iterated Dilated Convolutional Neural Network)网络.前者捕获输入序列的时序特征并能够根据字符重要性分配权值,后者主要捕获输入的空间特征,利用平均集成方式将捕获到的特征融合;最后通过CRF层获得全局最优的标注序列.集成模型在人民日报和微软亚洲研究院(Microsoft research asia, MSRA)数据集上的F1值分别达到了96.09%和95.01%.相较于单个模型分别提高了0.74%和0.55%以上,验证了本文方法的有效性.